

NS Haza, dous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
10/30/93	Granite City, IL	Hydrochloric Acid Solution	<1 Gallon				
11/01/93	Columbus, GA	Sodium Hydroxide Solution	1-2 Gallons				
11/01/93	Louisville, KY	Butyl Acrylate	1 Pint				
11/07/93	Decatur, IL	Denatured Alcohol (Residue)	1 Pint				
11/08/93	Cleveland, OH	Denatured Alcohol	<1 Pint				
11/09/93	Decatur, IL	Denatured Alcohol	1 Pint				
11/11/93	New Orleans, LA	Anhydrous Ammonia	<1 Pint				
11/18/93	Bellevue, OH	Ethyl Acrylate, Inhibited	Vapors				
11/27/93	Bluefield, WV	Carbon Dioxide, Refrigerated Liquid	10 lbs				
12/06/93	Hopewell, VA	Petroleum Distillate, N.O.S.	<1 Gallon				
12/07/93	Cleveland, OH	Denatured Alcohol	1 Pint				
12/18/93	Knoxville, TN	Liquefied Petroleum Gas	<1 Pint				
12/08/93	Toledo, OH	Liquefied Petroleum Gas (Residue)	<1 Pint				
12/11/93	Louisville, KY	Alcoholic Beverages	<1 Pint				
12/23/93	Toledo, OH	Xylene Residur	<1 Pint				
12/31/93	Irondale, AL	Sulfuric Acid	2 Gallons				
01/05/94	Louisville, KY	Sulfuric Acid	1 cup				
01/09/94	Knoxville, TN	Liquefied Petroleum Gas	10 gal				
01/11/94	Chattanooga, TN	Diesel Fuel	1900 gal				
01/15/94	Oliver, GA	Methyl Alcohol	5/10 gal				
01/24/94	Decatur, IL	Hydrochloric Acid	<1 pint				
01/31/94	Sheffield, AL	Fluosulfonic Acid	<1 gal				
02/02/94	St. Louis, MO	Ortho Chloronit Benzene	<1 pint				

NS Hazardous Material Reportable Incidents 1991 - 1995								
Date Location Commodity Qu								
02/02/94	Fostoria, OH	Petroleum Gas, Liquefied	<1 pint					
02/07/94	St. Louis, MO	Ammonium Nitrate Fertilizer	150 lbs					
02/07/94	Macon, GA	Carbon Dioxide, Refrigerated Liquid	<1 pint					
02/08/94	Mobile, AL	Sulfur Dioxide, Liquefied	<1 pint					
02/09/94	Chocowinity, NC	Sulfuric Acid	<1 gal					
02/15/94	Greensboro, NC	Hydrochloric Acid Sol.	<1 pint					
02/16/94	Decatur, AL	Hexamethylene Diamine Sol.	<1 gal					
02/22/94	Charleston, SC	Napthalene	1 pint					
02/22/94	Irondale, AL	Sulfuric Acid	2 gal					
02/23/94	Norris Yard, AL	Petroleum Lube Oil	1 quart					
02/28/94	Lynchburg, VA	Carbon Dioxide, Refrigerated Liquid	<1 pint					
03/09/94	Louisville, KY	Sodium Bichromate	l gal					
03/10/94	Decatur, AL	Nitrogen Fertilizer Sol.	1 gal					
03/10/94	St. Louis, MO	Sulfuric Acid	<1 pint					
03/13/94	St. Louis, MO	Xylene, Styrene	80 gal					
03/16/94	Chicago, IL	Xylene	1 gal					
03/24/94	Kansas City, MO	Elevated Temperature Material, Liquid, N.O.S.	2 pints					
03/26/94	Decatur, AL	Sulfuric Acid	<1 gal					
03/27/94	Sheffield, AL	N-Pentenes	1500 gal					
03/29/94	Cleveland, OH	Denatured Alcohol	<1 gal					
03/30/94	Knoxville, TN	Styrene Monomer, Inhibited	<1 pint					
03/30/94	Crewe, VA	Turpentine	1 gal					
04/08/94	Louisville, KY	Styrene Monomer	<1 gal					
04/12/94	Linwood, NC	Phosphoric Acid/Sulfuric Acid	1 pint					

NS Hazardous Material Reportable Incidents 1991 - 1995						
Date	Location	Commodity	Quantity			
04/15/94	Atlanta, GA	Benzoyl Chloride	2 gal			
04/17/94	Tilton, IL	Dipropylamine	<1 gal			
04/29/94	Columbus, OH	Petroleum Gases, Liquefied	1 cubic ft			
05/03/94	Cincinnati, OH	Phosphoric Acid/Sulfuric Acid	1 gal			
05/05/94	Decatur, AL	Sodium Hydroxide Sol.	2 gal			
05/05/94	Louisville, KY	Calcium Carbide	150 lbs			
05/06/94	Logansport, IN	Phosphoric Acid/Sulfuric Acid	<1 pint			
05/08/94	Raleigh, NC	Sodium Hydrosulfide Sol.	<1 gal			
05/09/94	Christiansburg, VA	Phosphoric Acid	1 quart			
05/09/94	Joyes, KY	Residue (last contained hydrochloric acid)	vapors			
05/12/94	Irondale, AL	Phosphoric Acid/Sulfuric Acid	2 gal			
05/18/94	Linwood, NC	Phosphoric Acid	1 pint			
05/19/94	South Bend, IN	Denatured Alcchol	<1 gal			
05/20/94	Charlotte, NC	Hydrogen Peroxide	0.5 pint			
05/20/94	Linwood, NC	Hydrogen Peroxide	0.5 cup			
05/26/94	Muscle Shoals, AL	Hydrochloric Acid Sol.	0.5 pint			
05/30/94	Decatur, IL	Alpha Methyl Styrene	5 gal			
06/03/94	Atlanta, GA	Sulfuric Acid	1 pint			
06/06/94	Chattanooga, TN	Arsenic Acid	~3000 gal			
06/08/94	Wilson, NC	Sulfuric Acid	<1 gal			
06/10/94	Savannah, GA	Hydrochloric Acid	<1 pint			
06/15/94	Hopewell, VA	Fuel Oil	1 pint			
06/17/94	Cincinnati, OH	Environmentally Haz. Substances, Liquid	<1 gal			
06/17/94	Columbus, OH	Diethyl Ether	2 cubic ft			

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
06/18/94	Decatur, IL	Nitric Acid	10 gal				
06/19/94	Decatur, IL	Polychlorinated Biphenyls	<5 gal				
06/22/94	Chattanooga, TN	Hydrochloric Acid Sol.	1 gal				
06/27/94	Macon, GA	Sulfuric Acid	<1 gal				
06/28/94	Hopewell, VA	Sulfuric Acid	<5 gal				
06/29/94	Mobile, AL	Methyl Acetoacetate	<1 pint				
07/04/94	Chicago, IL	Sulfuric Acid	<1 pint				
07/05/94	Buffalo, NY	Methyl Mathacrylate Monomer, Inhibited	1 pint				
07/07/94	Centralia, IL	Hydrochloric Acid Sol.	0.5 gal				
07/07/94	Cincinnati	Naptha	l gal				
07/07/94	Detroit, MI	Furfuryl Alcohol	1 quart				
07/11/94	Dorney, OH	Corrosive Liquids, NOS	3/5 gal				
07/18/94	Macon, GA	Sulfuric Acid	5 gal				
07/21/94	Greenville, SC	Ethyl Hexyl Acetate	2 gal				
07/21/94	Cincinnati, OH	Hydrochloric Acid Sol.	0.5 gal				
07/23/94	Irondale, AL	Paracymene, Xylene	l gal				
07/28/94	Doraville, GA	Kerosene	3 gal				
07/28/94	St. Louis, MO	Ethyl Hexyl Phthalate	30 gal				
08/04/94	Roanoke, VA	Fuel Oil #2	<10 gal				
08/05/94	Columbia, SC	Nitric Acid	<5 gal				
08/08/94	Decatur, IL	Ethyl Acrylate, Inhibited	<1 pint				
08/08/94	Roanoke, VA	Fuel Oil #2	3 gal				
08/10/94	Jacksonville, FL	Benzoyl Chloride	1 pint				
08/12/94	Williamson, WV	Fuel Oil #2	6 gal				

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
08/24/94	Charlotte, NC	Ethylene Oxide	<1 pint				
08/30/94	Decatur, IL	Cresol	<1 pint				
08/31/94	Argos, IN	Denatured Alcohol	0.5 gal				
09/07/94	Charleston, SC	Zinc Dithiophosphate	<10 gal				
09/08/94	Pine Hill, AL	Ammonia, Anhydrous, Liquefied	1 pint				
09/29/94	Maplesville, AL	Paracymene, Xylene	1 quart				
10/03/94	Jennings, FL	Residue (last contained phosphoric acid)	150 gal				
10/06/94	Decatur, IL	Hydrochloric Acid Sol.	<1 pint				
10/17/94	N. Kansas City, MO	Sodium Hydrosulfate Solution	<1 gal				
10/21/94	Decatur, IL	Creosote	0.5 gal				
10/24/94	Asheville, NC	Resin Solution (Formaldehyde, Methanol, Phenol)	1 pint				
10/27/94	Believue, OH	Ethyl Acrylate, Inhibited	<1 pint				
10/27/94	Louisville, KY	Rum (alcoholic beverages)	25 gal				
10/27/94	Elko, AL	Liquefied Petroleum Gas	1150 gal				
10/28/94	Crab Orchard, TN	Emission Control Dust	7750 lbs				
10/28/94	Louisville, KY	FREON (Chlorodifluoromethane)	10 lbs				
10/30/94	Valdosta, GA	Ammonia, Anhydrous, Liquefied	<1 gal				
11/01/94	Rock Hill, SC	Methanol	<1 gal				
11/11/94	Springfield, IL	Iron Sulfate	1 bushel				
11/12/94	Irondale, AL	Sulphate Turpintine	1 gal				
11/12/94	Crewe, VA	Gasoline & Diesel Fuel	<1 pint				
11/15/94	Chattanooga, TN	Hydrochloric Acid Sol.	1 pint				
11/17/94	Decatur, IL	Asphalt, Cutback	4 gal				

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
11/22/94	New Orleans, LA	Liquefied Petroleum Gas	<5 gal				
11/25/94	Charlotte, NC	Residue (last contained ethyl acrylate)	<1 pint				
12/03/94	Decatur, IL	Hydrochloric Acid Sol.	0.5 gal				
12/06/94	Mobile, AL	Hydrochloric Acid Sol.	<1 pint				
12/08/94	Loudon, TN	Ethyl Alcohol Denatured w/ Petro.	<10 gal				
12/21/94	Springie ld, IL	Ferric Sulfate	5 bushels				
01/10/95	Bellevue, OH	Flammable liquid NOS (turpentine)	l pt.				
01/12/95	Charleston, TN	Sulfuric acid	Vapors *				
01/12/95	Charleston, TN	Hydrochloric acid, solution	0 gal.*				
01/12/95	Decatur, IL	Hydrochloric acid, solution	5 gal.				
01/12/95	Decatur, IL	Hydrochloric acid, solution	Vapors*				
01/16/95	St. Louis, MO	Naphtha solvent	0.5 pt.				
01/21/95	Muscle Shoals, AL	Propionic acid	2 gal.				
01/26/95	Knoxville, TN	Molten sulfur	< 1 gal.				
01/29/95	Louisville, KY	Denatured alcohol	< 1 pt.				
02/01/95	Selma, NC	Sodium hydroxide, solution	1/2 cup				
02/07/95	Decatur, IL	Environmentally haz. sub. NOS, iron sulphate	1,000 lbs.				
02/08/95	Louisville, KY	Butadiene	< 1 pt.				
02/09/95	Cleveland, OH	Environmentally haz. sub. NOS, iron sulphate	50 lbs.				
02/11/95	Mobile, AL	Hydrochloric acid solution	Vapors (< 1 pt.)				
02/12/95	Blair, TN	Phosphoric acid, sulfuric acid	< 1 gal.				
02/15/95	Decatur, IL	Denatured alcohol	0 gal.*				

* Too little to quantify or vapors only.

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
02/17/95	Fustoria, OH	Petroleum gases, liquified	Vapors*				
02/17/95	Fostoria, OH	Residue: LPG	Vapors*				
02/17/95	Fostoria, OH	Residue: LPG	< 1 gal.				
02/18/95	Chattanooga, TN	Corrosive liquids, NOS	0 gal.*				
02/21/95	Columbus, OH	Phosphoric acid	1 qt.				
02/23/95	Decatur, IL	Butadienes, inhibited	Vapors *				
02/23/95	Harrisonburg, VA Liquified petroleum gas						
02/27/95	Durham, NC	Sodium hydroxide solution	5 gal.				
03/01/95	Charleston, SC	Combustible liquid NOS	Approx. 1 qt.				
03/06/95	Calhoun, TN	Hydrochloric acid solution	Vapors*				
03/14/95	Chocowinity, NC	Sulfuric acid	< 1 pt.				
03/20/95	Chattanooga, TN	Potassium hydroxide solution	1 pt.				
03/20/95	Decatur, IL	Hydrochloric acid solution	1 gal.				
03/21/95	Bellevue, OH	Ethylene glycol butyl ether	1 pt.				
03/27/95	Louisville, KY	Hydrochloric acid	Vapors*				
03/27/95	Fostoria, OH	Liquified petroleum gas	Vapors*				
03/27/95	Fostoria, OH	Liquified petroleum gas	Vapors*				
03/27/95	Fostoria, OH	Liquified petroleum gas	Vapors*				
03/27/95	Fostoria, OH	Liquified petroleum gas	Vapors*				
04/01/95	Chesapeake, VA	Corrosive liquid NOS	< 3 gal.				
04/05/95	Mobile, AL	Combustible liquids NOS	< 1 pt.				
04/07/95	Delaplain, KY	Diethyl ether	Vapors*				

* Too little to quantify or vapors only.

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
04/27/95 Mobile, AL		Sulfuric acid, spent	< 1 pt.				
04/29/95	Selma, AL	potassium hydroxide solution	< 1 pt.				
05/08/95	Decatur, IL	Butadienes, inhibited	Vapors*				
05/18/95	Mobile, AL	Sulfuric acid	< 1 gal.				
05/26/95	Decatur, IL	Hydrochloric acid	Vapors*				
05/29/95	Camden, OH	Elevated temperature material liquid NOS	37,025 gal.				
05/30/95	Bessemer City, NC	Hydrochloric acid solution	200 to 800 gal.				
05/30/95	McIntosh, AL	Sodium hydroxide solution	2 gal.				
06/01/95	Kenova, WV	Creosote	1 gal.				
06/07/95	Mobile, AL	Flammable liquid (turpentine)	< 1 qt.				
06/19/95	Albany, GA	Sulfuric acid	1 gal.				
06/28/95	Kenova, WV	Denatured alcohol	1 gal.				
07/13/95	Cincinnati, OH	Sodium hydroxide solution	< 1 gal.				
07/18/95	Charlotte, NC	Styrene monomer, inhibited	3 gal.				
07/21/95	Decatur, IL	Hydrochloric acid solution	2 gal.				
07/22/95	Bellevue, OH	Toluene	12 gal.				
07/27/95	Louisville, KY	Methyl methacrylate monomer	< 1 pt.				
07/27/95	Huron, OH	Ethylene glycol monobutyl ether	1 gal.				
08/13/95	Decatur, IL	Nitric acid	< 1 pt.				
08/14/95	Louisville, KY	Hydrochloric acid solution	< 1 pt.				
08/17/95	Springville, AL	Hydrochloric acid solution	2 gal.				
08/22/95	Cordele, GA	Sulfuric acid	l gal.				

* Too little to quantify or vapors only.

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Location	Commodity	Quantity				
08/29/95	Louisville, KY	Hydrochloric acid solution	< 1 qt.				
09/03/95	Decatur, IL	Denatured alcohol	< 1 gal.				
09/05/95	Kansas City, MO	Alkylamines NOS	< 1 gal.				
09/10/95	Melvindale, MI	Toxic liquids organic NOS	3 ga!. at site, total unknown				
09/10/95	Roanoke, VA	Diesel fuel	100 gal.				
09/18/95	At!nnta, GA	Organophosphorus pest. NOS	< 1 gal.				
09/18/95	Decatur, IL	Isopropanol	< 1 gal.				
09/24/95	Cincinnati, OH	Fluorosilicic acid	< 1 gal.				
09/25/95	Roxana, IL	Elev. temp. material, asphalt	< 1 pt.				
09/25/95	Decatur, IL	Cresols	< 1 gal.				
09/26/95	Portsmouth, OH	Molten sulfur	< 1 gal.				
09/27/95	Hartford, IL	Molten sulfur	< 1 gal.				
09/28/95	Albany, GA	Sulfuric acid	< 5 gal.				
09/28/95	Louisville, KY	Potassium hydroxide	< 1 gal.				
09/29/95	McIntosh, AL	Sodium hydroxide	< 1 gal.				
10/02/95	Louisville, KY	Nitric acid, mixtures	< 1 gal.				
10/04/95	Hopewell, VA	Carbon dioxide, refrigerated liquid	< 1 gal.				
10/04/95	Decatur, IL	Hydrochloric acid solution	< 1 gal.				
10/04/95	Hopewell, VA	Carbon dioxide, refrigerated liquid	1 gal.				
10/07/95	Decatur, IL	Other reg. substance liquid NOS - Creosote	< 1 pt.				
10/18/95	Charlotte, NC	Butyl acetate	< 1 pt.				
10/24/95	Bellevue, OH	Comb. liq. NOS; fuel oil/lead	< 1 gal.				
11/10/95	Birmingham, AL	Potassium hydroxide	< 1 gal.				

NS Hazardous Material Reportable Incidents 1991 - 1995							
Date	Date Location Commodity						
11/17/95	Birr ingham, AL	LPG propane	< 1 gal.				
11/19/95	Birmingham, AL	Ammonia, anhydrous	< 1 gal.				
11/20/95	Louisville, KY	Hydrochloric acid	< 1 gal.				
11/20/95	Roanoke, VA	Sulfuric acid	< 1 gal.				
11/22/95	Louisville, KY	Env. haz. substance liq. NOS, bis. phthalate	< 1 gal.				
11/24/95	Melvindale, MI	Acetone	< 1 gal.				
12/04/95	Bement, IL	Elv. temp. material NOS, Benzo A Pyrene	< 1 gal.				
12/13/95	Mobile, AL	Flammable liq. NOS, crude sulfate turp.	< 1 gal.				
12/14/95	Sheffield, AL	Phosphoric acid	< 1 gal.				
12/16/95	Sheffield, AL	Hydrochloric acid	< 1 gal.				
12/22/95	Decatur, IL	Hydrochloric acid	< 1 gal.				
12/26/95	Crewe, VA	Carbon dioxide	< 1 gal.				

APPENDIX G CSX - CHANGES IN LINE DENSITIES BY TRAIN AND BY GROSS TONNAGE FOR EXISTING CSX SYSTEMS, CONRAIL LINES TO BE ACQUIRED BY CSX, AND SHARED ASSETS AREAS. SOURCE: CSX OPERATING PLAN

BEGMENT					1995 ADJ BARE			PUAT	ACQUISITION	CHANGE IN .		
PROH STATIC	н	TO STATION		ROAD	HILLS		PRETOKT	TOTAL	PROR	PREIGHT	TOTAL	OF TRNS/DAT
РАРК ЈСТ	PA	RG	PA	CSXT		0	25	25	0	15.6	15.6	
RG	PA	WILSMERE	30	CSXT	26	0	22.9	22.9	0	26.4	26.4	1.5
WILSMERE	DE	BALTIMORE	HD	CPYT	68	0	26.9	26.9	0	28.8	28.8	1.9
BALTIMORE	MD	PELAY	MD	CSXT	7	15.5	39.6	55.1	15.5	42.7	50.2	1.1
RELAY	MD	JESSUP	MD	CSXT	7	15.5	33.1	48.6	15.5	17	52.5	1.9
JESSUP	MD	ALEXANDRIA JCT	MD	CSXT	17	15.5	33.4	48.9	15.5	37.1	52.6	1.7
ALEXANDRIA JCT	MD	WASHINGTON	DC	CSXT	5	15.5	23.9	39.4	15.5	30.6	46.3	6.9
WASHINGTON	DC	PT OF ROCK	MD	CSXT	()	14.4	23.8	38.2	14.4	30.8	45.2	7
PT OF ROCK	MD	HARPERS FERRY	WV	CSXT	13	14.4	33.3	47.7	14.4	41.6	56	8.1
HARPERS FERKY	w	CHERRY RUN	w	CSXT	32	7	33.3	40.1	7	40.6	47.6	11
CHEPRY PUN	w	CUMBERLAND	MD	CSXT	65	2	29	11	,		11	
CUMBERLAND	MD	SINNS	PA	CSXT	133	2	27.4	29.4	;	12.5	14 5	.:
5111115	PA	RANKIN JCT	PA	CSXT	,	2	30.0	12.0	2	40.2	42.2	
RANKIN JCT	PA	NEW CASTLE	PA	CSXT	51	ō	28.9	28.9		18.1	10 1	
NEW CASTLE	PA	YOUNGSTOWN	OH	CSXT	10.1	2	12.6	14.6	;	19.6	41 6	2.4
YOUNGSTOWN	NO	STERLING	Oli	CSXT	79.1	2	12.6	14.6	;	11.0	15 0	
STERLING	OII	GREENWICH	OH	Caxt	17.1	;	12.5	14.5	;	12.0	14.9	1.1
GPEENWICH	OH	WILLARD	Oli	CSXT	11.6	;	12.5	14.5	;	45.2	51.7	12.1
NILLARD	011	POSTORIA	OH	Caxt	16.0	;	12.5	14 4	;			
FOSTORIA	011	DESHLER	Oli	Caxt	26	;	14	16	;	17.0	10.0	21.5
DESHLER	011	WILLON CREEK	111	Caxt	174	;	21.4	21.4	;	41.7	39.9	3.9
WILLOW CREEK	111	PINE JCT	IN	CANT	12	;	20.1	22.1	;	16.6	10.6	26.5
PINE JCT	111	BARR YD	11.	CANT		-	27 6	27 6				10,5
RELAY	MD	PT OF BOCK	M	CANT							33.3	2. /
HAGERSTONN	MD	LURGAN	PA	Caxe							7.2	-0.1
HAGERSTON	MD	CHERRY BUN	M	Cave				4.5		2.5	2.5	0.2
ROCKNOOD	PA	1010194000		Cont							2	-1
LESTER	011	LOPATN	011	Cave								0
STPDI INC	011	184720	014	Cave							1.4	0
105700	011	CLEVELAND	01	CONT	10			2.3		2.3	5.3	0
heteolt	MT	BI YMOURY	- Crit	Cave	30					3.6	5.6	0
PI YMOUTH	MI	CRAND BARIOS		CONT	25		15.1	15.1	0	12.3	12.3	-2.0
COAND DADING	MT	UNVEDIV		CONT	124			11.4	0	6.4	6.4	-5
LINUPPLY				CONT		:		10.2	1	4.5	6.5	-3.7
ACTUAL		PUTTER	1	CSAT	110	:		•.•	2	2.8	4.8	-2
		WOLLY		CONT	23		10	10	0	12.2	12.2	2.2
		NUTRON	Pil I	CSAT	20		12.0	12.0	0	14	14	1.2
NOLLI	PIL			CSAT	20		11.5	11.1	0	12.5	12.5	1.2
	Pi I	PLINOUTH	FL	CSAT	12		12.2	12.2	0	12.9	12.9	0.7
PLYMOUTH	MI	WATNE	MI	CSXT		0	23.6	23.6	0	26.5	26.5	2.9
NAYNE	м	CARLETON	м	CSXT	15	0	22.0	22.8	0	24.0	24.8	2
CAPLETON	MI	TOLEDO	MI	CSXT	16.5	0	21.9	21.9	0	33.1	33.1	11.2
CINCINNATI	OH	HAMILTON	OH	CSXT	21	1	20.2	29.2	1	31.2	32.2	3
IAMILTON	OH	DAYTON	OH	CSXT	34	ø	25.4	25.4	0	26.5	26.5	1.1
DAYTON	OH	SIDNEY	OH	CSXT	17.3	0	22.6	22.6	0	24.9	24.9	2.3
SIDNEY	OH	LIMA	OH	CSXT	35.2	0	22.6	22.6	0	15.3	15.3	-7.3
LIMA	OH	DESHLER	OH	CSXT	33	0	26.5	26.5	0	14.9	14.9	-11.6
DESHLER	OH	TOLEDO	OH	CSXT	36	.0	0.6	0.6	0	14.2	14.2	13.6
OSTORIA	OII	TOLEDO	011	CSXT	29	0	33.3	33.3	0	37.4	37.4	4.1
VARION	OH	FOSTORIA	110	CSXT	40	0	17.0	17.0	0	27.4	27.4	9.6
COLUMBUS	OH	MARION	OH	CSXT	20	0	17.0	17.0	0	17.6	17.4	-0.4
J CABIN	KY	COLUMBUS	OH	CSXT	53	0	11.7	11.7	0	11.4	11.4	-0.1
INCINNATI	OH	COLUMBUS	OH	CSXT	112	0	2.8	2.8	0	2.9	2.9	0.1

Operating Plan Attachment 13.5

Page 1 of 10

BEGMENT					1995 ADJ BASE			POST-ACQUISITION TRNS/DAY			CHANGE IN .	
FROM STATION		TO STATION	1	ROAD	HILES	-	PRETONT	TOTAL	PROR	FREIGHT	TOTAL	OF TRNS/DAT
PAPK JCT	PA	RG	PA	CSXT		0	25	25	0	15.6	15.6	
RG	PA	WILSMERE	DE	CSXT	26	0	22.9	22.9	0	26.4	26.4	1.5
WILSMERE	DE	BALTIMORE	MD	CSXT	68	0	26.9	26.9	0	20.0	28.8	1.9
BALTIMORE	MD	RELAY	MD	CSXT	7	15.5	39.6	55.1	15.5	42.7	58.2	3.1
RELAY	MD	JESSUP	MD	CSXT	7	15.5	33.1	48.6	15.5	37	52.5	1.9
JESSUP	MD	ALEXANDRIA JCT	MD	CSXT	17	15.5	33.4	48.9	15.5	37.1	52.6	3.7
ALEXANDRIA JCT	MD	WASHINGTON	DC	CSXT	5	15.5	23.9	39.4	15.5	30.6	46.3	6.9
WASHINGTON	DC	PT OF ROCK	MD	CSXT	43	14.4	23.8	38.2	14.4	30.8	45.2	7
PT OF ROCK	MD	HARPERS FERRY	WV	CSXT	13	14.4	33.3	47.7	14.4	41.6	56	8.3
HAPPERS FERRY	w	CHERRY RUN	WV	CSXT	32	7	33.3	40.3	7	40.6	47.6	7.3
CHEPRY RUN	w	CUMBERLAND	MD	CSXT	65	2	29	31	2	31	33	2
CUMBERLAND	MD	SINNS	PA	CSXT	133	2	27.4	29.4	2	32.5	34.5	5.1
SINNS	PA	RANKIN JCT	PA	CSXT	,	2	30.8	32.0	2	40.2	42.2	9.4
RANKIN JCT	PA	NEW CASTLE	PA	CSXT	51	0	20.9	28.9	0	38.3	38.3	9.4
NEW CASTLE	PA	YOUNGSTOWN	OH	CSXT	10.3	2	32.6	34.6	2	39.6	41.6	7
YOUNGSTOWN	OH	STERLING	OH	CSXT	79.1	2	32.6	34.6	2	33.9	35.9	1.1
STEPLING	OH	GREENWICH	OH	CSXT	37.1	2	32.5	34.5	2	32.9	34.9	0.4
GPEENWICH	OH	WILLARD	OH	CSXT	11.6	2	32.5	34.5	2	55.2	57.2	22.7
WILLARD	OH	FOSTORIA	110	CSXT	36.8	2	32.5	34.5	2	54	56	21.5
FOSTORIA	110	DESHLER	OH	CSXT	26	2	34	36	2	37.9	39.9	3.9
DE SHILER	OH	WILLOW CREEK	IN	CSXT	174	2	21.4	23.4	2	47.7	49.7	26.3
WILLOW CREEK	111	PINE JCT	IN	CSXT	12	2	20.1	22.1	2	36.6	38.6	16.5
PINE SCT	IN	BARR YD	IL	CSXT	11	0	27.6	27.6	0	33.3	33.3	5.7
RELAY	MD	PT OF ROCK	MD	CSXT	58	0	9.3	9.3	0	9.2	9.2	-0.1
HACERSTOWN	MD	LURGAN	PA	CSXT	34	0	2.3	2.3	0	2.5	2.5	0.2
IU.GERSTOWN	MD	CHERRY RUN	MD	CSXT	19	0	3	3	0	2	2	-1
POCKWOOD	PA	JCHNSTOWN	PA	CSXT	45	0	1	1	0	1	1	0
LESTER	OH	LORAIN	OH	CSXT	23	0	1.4	1.4	0	1.4	1.4	0
STERLING	OII	LESTER	OH	CSXT	16	0	5.3	5.3	0	5.3	5.3	0
LESTER	011	CLEVELAND	OH	CSXT	30	0	5.8	5.0	0	5.8	5.8	0
DETROIT	MI	PLYMOUTH	MI	CSXT	25	0	15.1	15.1	0	12.3	12.3	-2.8
PLYMOUTH	MI	GRAND RAPIDS	MI	CSXT	124	0	11.4	11.4	0	6.4	6.4	-5
GRAND RAPIDS	MI	WAVERLY	MI	CSXT	26	2	0.2	10.2	2	4.5	6.5	.3.7
WAVERLY	MI	FORTER	IN	CSXT	110	2	4.8	6.8	2	2.8	4.8	• 2
SAGINAN	MI	FLINT	MI	CSXT	29	0	10	10	0	12.2	12.2	2.2
FLINT	MI	HOLLY	MI	CSXT	28	0	12.0	12.0	0	14	14	1.2
HOLLY	MI	WIXOM	MI	CSXT	20	0	11.3	11.3	0	12.5	12.5	1.2
WIXOM	MI	PLYMOUTH	MI	CSXT	12	0	12.2	12.2	0	12.9	12.9	0.7
PLYMOUTH	MI	NAYNE	MI	CSXT		0	23.6	23.6	0	26.5	26.5	2.9
WAYNE	MI	CARLETON	MI	CONT	15	0	22.0	22.8	0	24.0	24.8	2
CARLETON	MI	TOLEDO	MI	CSXT	16.5	0	21.9	21.9	0	33.1	33.1	11.2
CINCINNATI	OH	HAMILTON	OH	CSXT	21	1	20.2	29.2	1	31.2	12.2	3
HAMILTON	OH	DAYTON	OH	CSXT	34	0	25.4	25.4	0	26.5	26.5	1.1
DAYTON	OH	SIDNEY	OH	CSXT	37.3	0	22.6	22.6	0	24.9	24.9	2.3
SIDNEY	OH	LIMA	OH	CSXT	35.2	0	22.6	22.6	0	15.3	15.3	-7.1
LIMA	OH	DESHLER	OH	CSXT	33	0	26.5	26.5	0	14.9	14.9	-11.6
DESHLER	IIO	TOLEDO	OH	CSXT	36	.0	0.6	0.6	0	14.2	14.2	13.6
FOSTORIA	OH	TOLEDO	OH	CSXT	29	0	33.3	33.3	0	37.4	37.4	4.1
MARION	OH	POSTORIA	OH	CSXT	40	0	17.0	17.0	0	27.4	27.4	9.4
COLUMBUS	OH	MARION	OH	CSXT	20	0	17.0	17.0	0	17.4	17.4	-0.4
N J CABIN	KY	COLUMBUS	OH	CSXT	53	0	11.7	11.7	0	11.4	11.4	-0.3
CINCINNATI	OH	COLUMBUS	OH	CSXT	112	0	2.8	2.8	0	2.9	2.9	0.1

Operating Plan Attachment 13.5 Pays 1 of 10

CSX TRAIN DENSITIES

-

BEGMENT						1995 ADJ BAS		POST-	ACQUISITION	TRNS/DAY		
PROM STATION		TO STATION		ROAD	HILLS	PROR	PREIONT	TOTAL	PROR	PREIGHT	TOTAL	OF TRNS/DAT
HAMPTON	VA	RIVANNA JCT	VA	CSXT		2.9	9.6	12.5	2.9	0.6	11.5	-1
BTVANNA JCT	VA	CLIFTON FORGE	VA	CSXT	229	0	9.8	9.8	0	9.7	9.7	-0.1
CLIFTON FORCE	VA	ST ALBANS	WV	CSXT	195	0.9	9.8	10.7	0.9	10.9	11.0	1.1
ST ALBANS	W	BARBOURSVILLE	WV	CSXT	29	0.9	10.9	11.0	0.9	12.0	13.7	1.9
BAUBOURSVILLE	W	HUNTINGTON	w	CSXT	10	0.9	13.4	14.3	0.9	14.9	15.8	1.5
HINT INGTON	NV	KENOVA	WV	CSXT		0.9	15.5	16.4	0.9	16.8	17.7	1.3
KENOVA	w	BIG SANDY JCT	WV	CSXT	1	0.9	15.4	16.3	0.9	33.2	34.1	17.0
BIC SAUDY ICT	KY	ASHLAND	KY	CSXT	6	0.9	32.5	33.4	0.9	30.5	31.4	- 2
A CHI AND	KY	RUSSELL.	KY	CSXT		0.9	32.5	33.4	0.9	32.5	33.4	0
DIRCELL	KY	N J CARTH	KY	CSXT	19	0.9	20.0	21.7	0.9	18.8	19.7	-2
HUSSELL	KY	COVINGTON	KY	CSXT	121	0.9	7.5	8.4	0.9	8.6	9.5	. 1.1
N J CABIN	M	W VIRGINIA C	w	CSXT	28	0	14	14	0	16.6	16.6	2.6
U VIDCINIA C	NV.	MK JCT	NV	CSXT	46	0	9.4	9.4	0	12	12	2.6
W VIRGINIA C	1.07	CRAFTON	NV	CSXT	26	0	9.4	9.4	0	12	12	2.6
MK JCT		BPDKPLPY ICT	NV	CANT	2		10.0	10.0	0	10.0	10.0	0
GRAFTON		BERRELET JCT	111	CANT	21	õ	1.4	3.0	0	3.0	3.0	0
BERKELEY JCT	wv	SHORT LINE JCT		Cave			4.6	4.6	0	4.4	4.4	-0.2
BROOKLYN JCT	NV	SHORT LINE JCT		CONT		ő	1.5	4.5	0	4.5	4.5	0
PARKERSBURG	ww	BROOKLIN JCT		Cana		ě		5.1	0	5.1	5.1	-0.2
PARKERSBURG	WV	HUNTINGTON		CONT		ě			ō	6	6	0
BROOKLYN JCT	WV	BENNOOD JCT		CONT			1.5	2.4	0.9	1.5	2.1	0
RIVANNA JCT	VA	CHARLOTTESVILLE	VA	CONT	101	0.9	1.4	2.8	0.9	1.9	2.0	0
CHARLOTTESVILLE	VA	CLIFTON FORGE		Cana	67		2.5	1.9	1.4	2.5	3.9	0
MINSTER	IN	MONON	11	CONT	10			4.4	1.4	3	4.4	0
MONON	IN	LAPATETTE	11	CONT	20		7.6		1.4	7.6	9	0
LAFAYETTE	IN	CRANFORDSVILLE		CONT			4.7	4.2	0	2.2	2.2	-2
CRANFORDSVILLE	IN	GREENCASTLE	11	CONT				1.9	0.9	5	5.9	2
HAMILTON	NO	INDLANAPOLIS	11	CONT	120	0.5		7.8	0	1.7	1.7	-6.1
CINCINNATI	011	MITCHELL	IN	CONT	120		12.7	12.7	ō	5.8	5.8	-6.9
MITCHELL	IN	VINCENNES	IN	CSAT	70			14.7	ő	9.1	9.1	-5.1
VINCENNES	IN	SALEM	IL	CSA					õ	8.7	8.7	-1.1
SALEM	IL	E. ST LOUIS	IL	CSAT			20.2	20.2	ő	21.6	21.6	1.4
DOLTON	IL	DANVILLE	IL	CSAT	100		20.6	22 6	ě	21.9	21.9	1.1
DANVILLE	IL	TERRE HAUTE	IN	CSXT	21		22.0	22.0	ě	28.5	28.5	5.9
TERRE HAUTE	IN	VINCENNES	IN	CSXT			22.0	22.0	ě	10.	10.0	8.5
VINCENNES	IN	EVANSVILLE	IN	CSXT			22.5	21 4	ě	12.7	12.7	9.1
EVANSVILLE	IN	IUÇMA	TN	CSAT	137		23.4		ě		48.4	7.6
AMQUI	TN	NASHVILLE	TN	CSAT	10			21.7	ě	21 4	21.4	1.7
NASHVILLE	TN	DECATUR	AL	CSXT	110		21.1	21.1		23.4	21.	
DECATUR	AL	BLACK CREEK	AL	CSXT		0	22.5	22.5		23.0	23.0	
BLACK CRK	AL	BIRMINGHAM	AL	CSXT		0	33.7	33.7		10 2	10 7	.2.1
BIRMINGHAM	AL	PARKNOOD	AL	CSXT	12	0	32.0	32.0	v	30.7	30.7	
PARKWOOD	AL	MONTGOMERY	AL	CSXT	.7	0	14.1	14.1	0	14.3	14.3	0.2
MONTGOMERY	AL	FLOMATON	AL	CSKT	110	0	16.1	16.1	0	10	10	1.9
ANCHORAGE	KY	WINCHESTER	KY	CSXT	95	0	2.6	2.6	0	3.3	3.3	0.1
NINCHESTER	KY	TYPO	KY	CSXT	123	0	13.1	13.1	0	13.1	13.1	U
TYPO	KY	N. HAZARD	KY	CSXT	5	0	10.6	10.6	0	10.6	10.6	0
N. HAZARD	KY	LOTHAIR	KY	CSXT	2	0	10.9	10.9	0	10.9	10.9	0
LOTIAIR	KY	JEFF	KY	CSXT	5	0	0.4	0.4	0	0.4	0.4	0
JEFT	KY	DENT	KY	CSXT	11	0	6.9	6.9	0	6.9	6.9	0
DENT	KY	BLACKEY	KY	CSXT	•	0	5.2	5.2	0	5.2	5.2	0
BLACKEY	KY	DUO	KY	CSXT	2	0	4.3	4.3	0	4.3	4.3	0
DUO	KY	PAT	KY	CSXT	10	0	1.3	4.3	0	4.3	4.3	0

Page 2 of 10

	BEGHENT						1995 ADJ BAS		PORT		-	
FROM STAT	NOI	TO STATION		ROAD	HILSS	PACE	PREIGHT	TOTAL	PROR	PREIGHT	TOTAL	OF TRNS/DAY
PAT	KY	DEANE	KY	CSXT		•						
BCC JCT	KY	DEANE	KY	CSXT	22	õ				1.1	4.4	0
PORTER JCT	KY	BCCJCT	KY	CSXT	6	0				2	;	0
STEVENS BPANCH	KY	PORTER JCT	KY	CSXT	12	ō	7.5	7.5	ů	- :		0
MARTIN	KY	STEVENS BRANCH	KY	CSXT	1	0	7.5	2.5		7.6	1.5	0
BEAVER JCT	KY	MARTIN	KY	CSXT	5	0	7.5	7.5	ő	7.5		0
LATONIA	KY	ANCHORAGE	KY	CSXT		0	15	15	ő	12.7	12.7	
ANCHORAGE	KY	LOUISVILLE	KY	CSXT	11	0	20.6	20.6	ő		12.1	-2.3
LOUISVILLE	KY	IUQMA	TN	CSXT	173	0	10.0	18.8	ő	17.4	17.4	-2.3
CINCINNATI	CH	COVINGTON	KY	CSXT	6	0.9	35.9	36.8	0.9	11.6	14.6	-1.4
COVINCTON	KY	AINOTAL	KY	C3XT	1	0	30.3	30.3	0	28.9	20.0	-2.3
LATONIA	KY	WINCHESTER	KY	CSXT	93	0	17.1	17.1	ō	16	16	
WINCHESTER	KY	SINKS	KY	CSXT	56	0	24.6	24.6	ő	21.1	21.1	
SINKS	KY	CORBIN	KY	CSXT	35	0	22.9	22.9	ő	21 6	21.6	-1.3
CORBIN	KY	CARTERSVILLE	GA	CSXT	263	0	27.1	27.1	ő	26.1	26.1	-1.3
CAPTERSVILLE	GA	ATLANTA	GA	CSXT	46	0	19.4	39.4	ő	18.1	10.1	-1.2
ATIANTA	GA	MANCHESTER	GA	CSXT	78	0	19.2	19.2	ő	16.6	16.6	-1.1
MANCHESTER	GA	WAYCROSS	GA	CSXT	203	Ō	27.9	27.9	ő	26	10.0	-2.6
CORBIN	KY	HEIDE "K	m	CSXT	15	0	9.2	9.2	ě		20	-1.9
HEIDRICK	KY	ELYS	KY	CSXT	10	0					9.2	U
ELYS	KY	YINGLING	KY	CSXT	2	0			ő			0
YINGLING	KX	PINEVILLE	KY	CSXT		o			ě	-		0
PINEVILLE	KY	HARBELL	KY	CSXT	1	0	3.0	5.0	ő			0
HARBELL	KY	PONZA	KY	CSXT	2	Ō	5.5	5.5	ő			0
PONZA	KY	CROSBY	KY	CSXT	11	ō	5.5	5.5	ő			U
BLACKMONT	KY	CROSBY	KY	CSXT		0	5.5	5.5	ő		2. 2	0
BLACKMONT	KY	KERR	KY	CSXT	,	0	5.6	5.6	ő		5.5	0
KERR	KY	BAXTER	KY	CSXT		0	5.7	5.7	ō	. 7	5.0	0
BAXTER	KY	HARLAN	KY	CSXT	2	0	5.7	5.7	ō			
DRESSEN	KY	HARLAN	KY	CSXT	1	0	4.4	4.4	ő			
DRESSEN	KY	GLIDDEN	KY	CSXT	5	0	4.4	4.4	ő			0
GLIDDEN	KY	POPEVILLE	KY	CSXT	2	0			ō			0
POPEVILLE	KY	KY-VA ST-LN	KY	CSXT	7	0			0			0
KY-VA ST-IN	VA	HAGANS	VA	CSXT	3	0	•		ō			0
HAGANS	VA	PENNINGTON	VA	CSXT	16	0	•		ō			0
PENNINGTON	VA	BIG STONE GAP	VA	CSXT	16	0	4.3	4.3	0	1.3	4.1	0
LOUISVILLE	KY	LONG BRANCH	KY	CSXT	10	0	4.4	4.4	0	4.2	4.2	-0.2
LONG BRANCH	KY	SKILLMAN	KY	CSXT	49	0	4.3	4.3	0			-0.1
SKILLMAN	KX	HENDERSON	KY	CSXT	60	0	4.3	4.3	0			-0.1
BIG SANDY JCT	KY	ELKHORN CITY	KY	CSXT	127	0	10.5	18.8	0	10.0	10.0	0
ELKNORN CITY	KY	FRISCO	TN	CSXT		0	19.3	19.3	0	19.3	19.3	õ
FRISCO	TN	BOSTIC	NC	CSXT	157	0	19.3	19.3	0	19.3	19.3	ů
BOSTIC	NC	SPARTANBURG	SC	CSXT	32	0	13.0	13.8	0	13.0	11.8	ů
LAURENS	SC	SPARTANBURG	SC	CSXT	38	0	13.6	13.6	0	12.0	12.0	-0.0
CLINTON	SC	LAURENS	SC	CSXT	11	0	6.6	6.4	0	6.4	6.4	0
COLUMBIA	SC	CLINTON	SC	CSXT	63	0	10.4	10.4	0	10.4	10.4	ň
EASTOVER JCT	SC	COLUMBIA	SC	CSXT	27	0	4.3	4.3	0	4.3	4.1	0
UMTER	SC	EASTOVER JCT	SC	CSXT	19	0	3.9	3.9	0	1.9	1.9	0
UMTER	SC	LANE	SC	CSXT	40	0	3.7	3.7	0	3.7	1.7	0
CHARLOTTE	NC	BCSTIC	NC	CSXT	73	0	7.6	7.6	0	.7.6	7.6	0
ONROE	NC	CHARLOTTE	NC	CSXT	24	0	12	12	0	12.4	12.4	0.4
NUCUSTA	GA	GREENWOOD	90	C3XT	68	0	8.8	8.8	0	0.2	0.2	-0.6

100

Operating Plan Attachment 13.5

maner 1

Page 3 of 10

CEX TRAIN DEMEITIES

	BEGMENT								POST-	ACQUISITION	RNS/DAY	CHANGE IN .
PROM STATION	1	TO STATION		ROAD	HILLS	1001	FREIGHT	TOTAL	PROR	PREICHT	TOTAL	OF TRNS/DAT
						•	10.4	10.5	0	9.8	9.8	-0.7
GPEENWOOD	SC	LAURENS	30	CONT			10.7	18.7	ō	24.3	24.3	5.6
ALEXANDRIA JCT	MD	BENNING	DC	Cakt		22	16.1	18.1	22	23.4	45.4	7.1
FREDERICKSHURG	VA	POTOMAC YARD	VA	CSAT			16.9	10.7	14.5	22.8	37.3	6.6
DOSWELL	VA	FREDERICKSBURG	VA	CSXT		10.5	17.4	12 1	14.5	24.8	39.3	7
RICIMOND	VA	DOSWELL	VA	CSXT	24	14.5		26.4		23	31	4.6
S. RICIMOND	VA	NELDON	NC	CSKT	82			27.6		25.5	33.5	5.9
WELDON	NC	ROCKY MT	NC	CSXT	37		19.0	27.6		22.1	30.1	2.5
ROCKY MT	NC	CONTENTNEA	NC	CSXT	19		19.0	26.2		21	29	2.8
CONTENTNEA	NC	SELMA	NC	CSXT	22		10.2	20.2		21.6	25.6	1.2
SELMA	NC	PAYP. TEVILLE	NC	CSXT	49	•	20.4	24.4		22.2	26.2	0.1
FAYETTEVILLE	NC	PELBROKE	NC	CSXT	31	•	22.1	20.1		17.2	21.2	1.5
PEMBROKE	NC	DILLON	SC	CSXT	21	•	15.7	19.7		10	21	1.4
DILLON	SC	FLORENCE	SC	CSXT	31	•	15.6	19.6		16.6	20.6	1.9
FLORENCE	SC	LANE	SC	CSXT	49	4	12.7	16.7		10.0	21.9	1.7
1 MIT	SC	ST STEPHEN	SC	CSXT		•	16.2	20.2		19.9	20.5	1.8
ST STPDIPH	SC	ASHLEY JCT	SC	CSXT	39	•	12.7	16.7		10.5	24 6	1.9
ASULTY ICT	SC	YE ASSEE	SC	CSXT	54	•	16.7	20.7		20.0	24.0	1.9
ASHLET JCT	90	SAVANNAH	GA	CSXT	55	4	12.2	16.2	•	16.1	20.1	
TEPUSSEE	CA	.18 9119	GA	CSXT	52	6	17.3	23.3	6	22.8	20.0	
SAVANNAJI	CA.	NAVCROSS	GA	CSXT	39	0	7.2	7.2	0	7.0	7.0	0.6
JESUP		WATCHOUSS .	NC	CSXT	81	0	3.5	3.5	0	5		1.5
PEMBROKE	NC	DEMODON'S	NC	CSXT	34	0	11.0	11.0	0	13.1	13.1	1.1
IUMILET	NC	MONDOR	NC	CSXT	53	0	20.4	20.4	0	23	23	2.6
IDMLET	NC	PIONROE .	NC	CSXT	92	0	13.1	13.1	0	15.6	15.6	2.5
MONRGE	NC	CLINTON		CANT	28	0	17.1	17.1	0	19.6	19.6	2.5
CLINTON	ac	GREENWOOD			66	0	16.1	16.1	0	10.0	10.0	2.7
GREENWOOD	SC	ATHENS	-	Cave		ő	10.7	10.7	0	21	21	2.3
ATHENS	GA	ATLANTA		CONT	70	ő	15.1	15.3	0	16.5	16.5	1.2
ATIANTA	GA	LAGRANGE		CONT	100	ě	11.9	11.9	0	11.2	11.2	-0.7
LAGPANGE	GA	MONTGOMERY	AL	CONT	100	;		5.4	2	1.1	5.3	-0.1
IDMLET	NC	MCBEE	30	CSAT	100			6.4	2	4.4	6.4	0
MCBEE	SC	COLUMBIA	SC	CSXT	100				,		5.7	-0.2
COLUMBIA	SC	FAIRFAX	SC	CSXT	76	1			;		13.6	-0.8
PAIRFAX	SC	SAVANNAH	GA	CSXT	62	2	12.4			7.7	1.7	-1.2
HAMLET	NC	DILLON	SC	CSXT	42	0				4.2	4.2	-0.1
DILLON	SC	ANDREWS	90	CSXT	76	0					2.5	0
ANDRENS	SC	STATE JCT	SC	CSXT	20	0	2.5	2.5			2 2	0
APATE ICT	SC	REMOUNT	SC	CSXT	20	0	2.2	2.2				a
STATE SCI	90	CHARLESTON	SC	CSXT	10	0	1.6	1.6	0	1.0		-0.4
REMOUNT	GA	ATLANTA	GA	CSXT	126	0	9.1	0.1	0	1.1		-0.4
CARA	Ch	CAMAK	GA	CSXT	48	0	7.1	7.1	0	0.1		-0.4
AUGUSTA		AUCUSTA	GA	CSXT	28	0	12.9	12.9	0	12.3	12.3	-0.8
ROBBINS	30	BOBBING	90	CSXT	29	0	12.9	12.9	0	12.3	12.3	-0.6
FAIRFAX	30	RUBBINS	•	CSXT	31	0	3	5	0	5	5	0
YEMASSEE	SC	PAINFAX			116		10.1	10.1	0	12.4	12.4	2.3
MCKENZIE	TN	MEMPHIS		Cave	117	ō	9.4	9.4	0	11.7	11.7	2.3
NASIWILLE	TN	MCKENZIE	14	Cave		ō	20.6	20.6	0	21.1	21.1	0.5
NASINILLE	TN	STEVENSON	AL	CONT			19.6	19.6	0	17.5	17.5	-2.1
STEVENSON	AL	CHATTANOOGA	TN	CONT			11.1	17.7	0	17.4	17.4	-0.3
CHATTANOOGA	TN	CARTERSVILLE	CA	CONT			11.5	11.5	0	13.5	13.5	0
LAGRANGE	AL	PARKWOOD	AL	CONT	112		12	12	0	11.6	11.6	-0.4
MANCHESTER	GA	LAGRANGE	GA	CSAT					0	7.6	7.6	-0.4
WAYCROSS	GA	THOMASVILLE	GA	CSXT	105			0.4	o	0.4	0.4	0
THOMASVILLE	GA	METCALF	GA	CSXT	11	U						

Page 4 of 10

	BEGMENT								POST.	ACOULETELON		
PROM STATI	ON	TO STATIO	1	ROAD	HILLS	-	PREIMIT	TOTAL	PECR	FREIGHT	TOTAL	OF TRNS/DAY
THOMASVII.LE	GA	MONTGOMERY	AL	CSXT	210	0	7.9	7.9	0	6.2	4.7	
JESUP	GA	FOLKSTON	GA	CSXT	54	6	10.3	16.3		12.4		
JACKSONVILLE	FL	BALDWIN	FL	CSXT	10	2.0	21.9	24.7	2.8	21.1	26.1	
BALDWIN	FL	CHATTAHOOCHEE	FL	CSXT	189	0.9	11.7	12.5	0.0	11.1	11.9	-0.6
CHATTAHOOCHEE	FL	PENSACOLA	FL	CSXT	161	0.8	10.3	11.1	0.0	9.7	10.5	-0.6
PENSACOLA	EL.	FLOMATON	AL	CSXT	43	0.8	9.9	10.7	0.8	11.1	12.1	
FLOMATON	AL	MOBILE	AL	CSXT	59	0.8	25.1	25.9	0.0	25.8	26.6	0.7
MOBILE	AL	NEW ORLEANS	LA	CSXT	143	0.0	20.6	21.4	0.6	22.7	21.5	21
NAYCROSS	GA	POLKSTON	GA	CSXT	35	0	11.1	33.1	0	32.4	12.4	-0.7
FOLKSTON	GA	CALLAHAN	FL	CSXT	22	6	43.9	19.9	6	44.6	50.6	0.7
CALLAHAN	FL	BALDWIN	FL	CSXT	21	0	17.7	17.7	0	18.1	18.1	0.6
BALIMIN	FL	STARKE	FL	CSXT	26	2	22.7	24.7	;	21.1	25.1	0.6
STAPKE.	FL	VITIS	FL	CSXT	126	2	19.3	21.3	2	19.1	21 1	0.0
VITIS	FL.	PLANT CITY	FL	CSXT	19	0	9.6	9.6	ō	9.6	9.6	
PLANT CITY	FL.	UCETA YARD	11	CSXT	17		9.1	13.1		9.6	11.6	
CALLANAN	FL	JACKSONVILLE	FL	CSXT	16	6	23.5	29.5		21.2	29.2	.0.1
JACKSONVILIZ	FL	PALATKA	FL	CSXT	54	4.8	0.3	11.1	4.4		11.1	
PALATKA	FL	SANFORD	FL	CSXT	68	1.1	6.6	11.4				0
SANFORD	FL.	ALONA	FL	CSXT	27	0	2					, in the second s
SANFORD	TL.	ORLANDO	FL	CSXT	22	4.4		12.0				0
ORLANDO	FL	AUBURNDALE	FL	CSXT	51		7.7	11.7		• •	12.0	
AUBURNDALE	FL	LAKELAND	FL	CSXT	12		7.2	11.2			12 6	
LAKELAND	FL	WINSTON	FL	CSXT	4		17.6	21.6		18.9	22 0	
WINSTON	FL	PLANT CITY	FL	CSXT	5		9.8	11.0			15.1	
AUBURNDALE	PL.	SEBRING	TL	CSXT	47		11.1	15.3			15.1	1.3
SEBRING	PL.	N. PALM BCH	FL	CSXT	103		15.6	21.6	-	15.6	21 6	U O
N. PALM BCH	FL	MIAMI	FL	CSXT	70	30	6.7	36.7	10	6.7	16 7	
BALT IMORE	MD	HANOVER	PA	CSXT	55	0	3.4	3.4	0	1.4	1.4	0
HANOVER	PA	HAGERSTOWN	MD	CSXT	57	0	1.6	1.6	ō	1.6	1.6	
HARPERS FERRY	w	STRASBURG JCT	VA	CSXT	51	0	0.9	0.9	ō	0.9	0.9	0
GREEN JCT	PA	BROWNFIELD	PA	CSXT	15	0	0.4	0.4	0	0.4	0.4	Å
SINNS	PA	BROWNSVILLE	PA	CSXT	38	0	1.5	1.5	0	10.0	10.0	• 1
RANKIN JCT	PA	WILLOW GROVE	PA	CSXT	11	2	1.7	3.7	2	1.7	1.7	
GLENWOOD JCT	PA	TYLERDALE	PA	CSXT	32	0	0.5	0.5	ō	0.5	0.5	ě
NILLOW GROVE	PA	NEW CASTLE	PA	CSXT	56	0	1	1	0			ő
WELLSBORD	IN	N. JUDSON	IN	CSXT	15	0	0.3	0.3	0	0.3	0.1	ő
PINE JCT	IN	ROCK ISLAND JCT	IL	CSXT	10	0	2	2	0	2	2	ő
BARR YD	IL	BLUE ISLAND JCT	IL	CSXT	3	0	7 '	7	0	22.9	22.9	15.9
DOLTON	IL	75TH STREET	IL	CSXT		0	•	•	0	3.6	1.6	-0.4
BLUE ISLAND JCT	IL	SOTH STREET	IL	CSXT	15	0			0	11.4	11.4	14
BLUE ISLAND JCT	11.	CLEARING	IL	CSXT	15	0	17	17	0	17.4	17.4	
JOLIET	IL	OTTANA	11	CSXT	45	0	3	3	0	1		
DTTANA	IL	HENRY	IL	CSXT	44	0	2	2	0	2	;	â
GRAND RAPIDS	MI	BALDWIN	MI	CSXT	75	0	1.9	1.9	0	1.9	1.9	ő
BALLWIN	MI	WALICALLA	IM	CSXT	13	0	2	2	0	2	2	ě
ALLALLA	MI	LUDINGTON	MI	CSXT	14	0	1.6	1.6	0	1.6	1.6	ő
ALLALIA	MI	MANISTEE	MI	CSXT	27	0	0.9	0.9	0	0.9	0.9	
AVERLY	MI	GRAND HAVEN	MI	CSXT	20	0	2.6	2.8	0	2.0	2.0	ò
RAND HAVEN	MI	MUSKEGON	MI	CSXT	13	0	1.7	1.7	0	1.7	1.7	ě
USKEGON	MI	BERRY	MI	CSXT	5	0	1.7	1.7	0	1.7	1.7	i
ERRY	MI	MONTAGUE	M	CSXT	11	0	1.7	1.7	0	1.7	1.7	
ERRY	MI	FREMONT	MI	CSXT	20	0	0.6	0.6	0	0.6	0.6	

Operating Plan Attachment 13.5

Page 5 of 10

COX TRAIN DENSITIES

BECMENT						1995 ADJ BASE		POST-	ACQUISITION 1	RNS/DAY	CHANGE IN .	
FROM STATION		TO STATION		ROAD	HILES	-	PREIGHT	TOTAL	PROR	PREIGHT	TAL	OF TRNS/DAT
SACTUAL	м	MIDLAND	мі	CSXT	20	0			0	•	•	0
ACTUAN	MI	BAY CITY	MI	CSXT	17	0	2.4	2.4	0	2.4	2.4	0
SAGTUAN	MI	YALE	MI	CSXT	19	0	2.2	2.2	0	2.2	2.2	0
PORT HURON	MI	BELLE RIVER	MI	CSXT	15	0	•	•	0	•	•	0
FARCO	ON	BLENHEIM	ON	CSXT	4	0	2.2	2.2	0	2.2	2.2	0
CHATHAM	ON	FARGO	ON	CSXT	7	0	1.2	1.2	0	1.2	1.2	0
CHATIAM	IIO	SARNIA	ON	CSXT	53	0	1.2	1.2	0	1.2	1.2	0
AL PULLE TM	011	N. LORVIE	ON	CSXT	20	0	1.2	1.2	0	1.2	1.2	0
CAMBBIDGE	011	NEWARK	OH	CSXT	52	0	1	1	0	1	1	0
HPLINDK	OH	COLUMBUS	OH	CSXT	35	0	1.6	1.6	0	1.6	1.6	0
MIDDI PT(ADI 1CT	011	MIDDLETONN	OII	CSXT	11	0	6.3	6.3	0	5.4	5.4	-0.9
a stermon	VA	BELLNOOD	VA	CSXT		0	3.7	3.7	0	3.7	3.7	0
BELLUCOD	VA	HOPENELL	VA	CSXT	16	0	2.9	2.9	0	2.9	2.9	0
BELLWOOD	VA	CENTRALIA	VA	CSXT	3	0	2.1	2.1	0	2.1	2.1	0
BELLWOOD	NC	ROANOKE RAPIDS	NC	CSXT	5	0	0.2	0.2	0	0.2	0.2	0
UPI IVON	NC	FRANKLIN	VA	CSXT	41	0	7.7	7.7	0	7.4	7.4	-0.3
FRANKI IN	VA	PORTSMOUTH	VA	CSXT	37	0	7.1	7.1	0	6.6	6.6	-0.5
PRANKLIN POCKY MT	NC	PARMELE	NC	CSXT	32	0	3.2	3.2	0	3.2	3.2	0
KOCKI PI	NC	PLYMOUTH	NC	CSXT	37	0	2	2	0	2	2	0
PARTIELE	NC	ELMER	NC	CSXT	38	0	2	2	0	2	2	0
CONTENTIER	NC	WALLACE	NC	CSXT	69	L	4.4	4.4	0	4.4	4.4	0
LINDENH	NC	MOLTONVILLE	NC	CSXT	10	0	1.3	1.3	0	1.3	1.3	0
WARDAN	NC	FORT JCT	NC	CSXT	,	0	0.6	0.6	0	0.6	0.6	0
PATEITEVILLE	NC	VANDER	NC	CSXT	6	0	0.6	0.6	0	0.6	0.6	0
PATETTEVILLE	90	CROSS	SC	CSXT	10	0	2.1	2.1	0	2.1	2.1	0
ST STSPHEN	CA	BRUNSVICK	GA	CSXT	63	0	2	2	0	2	2	0
WATCROSS	-	PRADAON	GA	CSXT	30	0	1	1	0	1	1	0
WAYCHOSS		PEAKSON BCH	F1.	CSXT	12	0	2.5	2.5	0	2.5	2.5	0
YULEE		PERMANDING Den	GA	CSXT	41	0			0			0
JACKSONVILLE		SEALS		Caxt		ō	21.2	24.2	0	24.2	24.2	0
VALRICO	FL.	TEOPAN THE		CANT		ō	1.1	1.3	0	1.3	1.3	0
ORANGEBURG	SC	COPPANYILLE	90	CSXT	28	0	1	1	0	1	1	0
BELTON	30	SPEERVIELE	SC	CSXT	34	0	1.7	1.7	0	1.7	1.7	0
GREENVILLE	sc	STATIANDURG	30	CSXT	12	0	0.4	0.4	0	0.4	0.4	0
ANDERSON	30	BELION	NC	CANT		0	1.4	1.4	0	1.4	1.4	0
DURIUM	NC	DUDUD	NC	CANT	22	0	1.4	1.4	0	1.4	1.4	0
APEX	NC		NC	CANT	55	ō	2.6	2.6	0	2.6	2.6	0
NORLINA	NC	NALE ISA	NC	CANT	97	2	1.2	10.2	2	8.2	10.2	0
RALEIGH	NC .	BOBINSON	90	CSXT	7	ō	1	1	0	1	1	0
MCBEE	sc	ROBINSON	NC		24	0	1.2	1.2	0	1.2	1.2	0
MT HOLLY	NC	TERRELL	n.	Cave				1	0	1	1	0
MONTGOMERY	AL	WESTERN JCT	~	C			2.0	2.0	0	2.8	2.8	0
CAMAK	GA	HARLLEE				ě	1.6	1.6	0	3.6	3.6	0
ANDREWS	sc	PENNTROTAL JCT	50	Cave		ő	1.2	1.2	0	1.2	1.2	0
PENNYROYAL JCT	sc	GEONGETOWN		Cave		ő		6	0	5.0	5.0	-0.2
DAMES PT JCT	FL	N. SHORE SCI		Cave			2	2	0	2	2	0
BAINBRIDGE	GA	TALLANASSEE		Cave	16.1	i	1.1	1.0	0	2.1	2.1	0.3
HILLSDALE	IN	CIRCISMAN	IL.	CONT			1.4	1.0	0	2.1	2.1	0.3
CHRISMAN	IL	DECATUR	11	Cant			2.4	2.0	o	2.0	2.0	0
BRENTWOOD	TN	COLUMBIA	AL	CONT			2.2	2.2	ō	2.2	2.2	0
WELLINGTON	AL	BIRMINGHOM	AL	CONT					ō	2	2	0
EAKERS SIDING	IN	CHINOOK	IN	CONT				1.7	ō	3.7	3.7	0
EVANSVILLE	IN	ADAMS	IN	CSAT	,							

Operating Plan Attachment 13.5 Page 6 of 10

	91	GMENT					1995 ADJ BAS	12	POST-	ACQUISITION	TRNS/DAY	
PROM STATIO	H	TO STATIO	1	ROAD	HILLS		PREIGHT	TOTAL	PROR	FREIGHT	TOTAL	OF TRNS/DAT
ADAMS	IN	CARMI	IL	CSXT	28	0	2.6	2.6	0	2.6	2.6	0
ADAMS	IN	ABEE	IN	CSXT	6	0	0.0	0.0	ō	0.0	0.8	ő
CARMI	IL	VENEDY	IL	CSXT	89	0	0.6	0.6	0	0.6	0.6	õ
KRONOS	KY	MOORMAN	KY	CSXT	5	0	1.2	1.2	0	1.2	1.2	õ
KRONOS	KY	WILSON STA	KY	CSXT		0	1.2	1.2	ō	1.2	1.2	ő
MOORMAN	KY	DRAKESBORO	KY	CSXT	13	0	2.1	2.1	ō	2.1	2.1	õ
MORTON	KY	ATKINSON	KY	CSXT	5	0	5.0	5.6	ō	5.0	5.6	ő
ATKINSON	KY	PROVIDENCE	KY	CSXT	19	0	3.0	3.0	ō	1.0	3.0	ő
PROVIDENCE	KY	DOTIKI	KY	CSXT	5	0	2.6	2.6	ō	2.6	2.6	õ
MILLPORT	KY	ATKINSON	KY	CSXT	19	0	2.4	2.4	0	2.4	2.4	ō
СОМО	KY	SEIGLER 9 (NN)	KY	CSXT	4	0	1.2	1.2	0	1.2	1.2	õ
DRAKESBORO	KY	SINCLAIR	KY	CSXT	6	0	0.9	0.9	0	0.9	0.9	õ
DENT	KY	JIM HILL	KY	CSXT		0	1.4	1.4	0	1.4	1.4	ő
BLACK CRK	AL	CHETOPA	AL	CSXT	13	0	2.6	2.6	0	2.6	2.6	õ
MAGELIA	AL	BESSEMER	AL	CSXT	10	0	1.2	1.2	0	1.2	1.2	õ
ATTALLA	AL	GUNTERSVILLE	AL	CSXT	30	0	0.4	0.4	ō	0.4	0.4	ő
ATTALLA	AL	WELLINGTON	AL	CSXT	22	0	1.7	1.7	ō	1.7	1.7	ő
BOYLES	AL	BLUE CRK JCT	AL	CSXT	15	Ó	4.7	4.7	õ	4.7	4.7	õ
BLUE CRK JCT	AL	VALLEY CRK	AL	CSXT		ō			ō			ő
BOYLES	AL	MT. PINSON	AL	CSXT	10	ō	0.9	0.9	ő	0.9	0.9	ě
SELMA	AL	WESTERN JCT	AL	CSXT		ő	1.6	1.6	õ	1.6	1.6	ŏ
SELMA	AL	MYRTLENOOD	AL	CSXT	61	õ	1.6	1.6	ő	1.6	1.6	ě
MONTGOMERY	AL	AUTAUGA CRK	AL	CSXT	12	õ	0.4	0.4	ő	0.4	0.4	ŏ
CALHOUN	TN	PATTY	TH	CSXT		õ			ő			
DOSSETT	TN	HARDINAN		Care	24				ě	.:		
PTONNU			~								0.5	
NOPPLACE		WAD CAN		Cave							1.2	
LOUISVILLE		MEDORA		CONT	10						2.4	0
LOUISVILLE		NATION		Cave						4.1	2.1	0
MCKPUZIP		DREADEN		Cave								
DADY CITY		CIASCON		CONT						1.0	1.0	Ů
PARK CITT				CONT	10					0.0	0.6	U
RUCKPURT	GA	STILESBORD JCT		CSAT	"		1.4	1.2		1.2	1.2	0
STILESBORD JCT	GA	STILESBORD		CSAT					v			0
MONON	11	MPDADYUTTLE	11	CONT			0.2	0.2		0.2	0.2	0
CORRACTION	11	BLOOMINGTON		CONT			0.4	0.6		0.4	0.4	0
WISCHE!!	11	LOUISVILLE		Cave						0.0	0.0	0
LONG BOANCH				CONT								-3.8
LONG BRANCH				CONT	.:							0
INENTI FIRST ST				CONT							3.4	0
NONP SHIRE		PD-WV 33-LA		CONT						3.4	3.4	0
MD-WV ST-114	w	BATARD	WV	CSAT			3.4	3.4	0	3.4	3.4	0
HAYARD	WV	HENRY	wv	CSXT			1.2	1.2	0	1.2	1.2	0
MOK JCT	wv	KINGNOOD	WV	CSXT	1.	0	1.2	1.2	0	1.2	1.2	0
GRAFTON	WV	ND TONER	WV	CSXT	27	0	1.6	1.6	0	3.5	3.5	1.9
ND TONER	w	RIVESVILLE	WV	CSXT		0	1.5	1.5	0	3.4	3.4	1.9
W. MARIETTA	OH	RELIEF	OH	CSXT	21	0	1.0	1.0	0	1.0	1.0	0
TELPRE	OII	W. MARIETTA	OH	CSXT	12	0	1.0	1.0	0	1.0	1.0	0
BELPRE	OH	PARKERSBURG	OH	CSXT		0			0	3	3	0
BERKELEY JCT	WV	BERRYBURG JCT	W	CSXT			7.2	7.2	0	7.2	7.2	0
BERRYBURG JCT	WV	TIGART JCT	WU	CSXT			1.2	7.2	0	7.2	7.2	0
TTGART JCT	WV	CENTURY JCT	WV	CSXT			0.2	0.2	0	6.2	6.2	0
CENTURY JCT	w	BUCKBANNON	w	CANT	13	0	5.6	5.6	0	5.6	5.6	0

Operating Plan Attachment 13.5

Page 7 of 10

CAX TRAIN DENSITIES

		CMENT							POST-	ACQUISITION	TANS/DAY	CHANGE IN .
PROM STATION		TO STATION		ROAD	MILES		FREICHT	TOTAL	PAGR	PREICHT	TOTAL	OF TRNS/DAT
AUCKIANION	w	HAMPTON JCT	ww	CSXT		٥	5.6	5.6	0	5.6	5.6	0
HAMPTON ICT	NV	BURNSVILLE JCT	WV	CSXT	11	ō	1.6	5.6	0	5.6	5.6	0
AUDURUTIUS ICT	w	WH TONER	WV	CAXT	42	0	5.4	5.4	0	5.4	5.4	0
BURNSVILLE SCI	IN	ALLINGDALP	W	CANT	11	ō	0.6	0.6	0	0.6	0.6	0
WN TOWER		NORSON	-	Ceve			0.6	0.6	0	0.6	0.6	0
TYGART JCT		NORTON		Cave			0.1	0.1		0.1	0.1	0
NORTON		ELKING CTILES	-	CONT				0.4	0	0.4	0.4	0
BURNSVIILE JCT		GILAER		Can	:			0.4	ä	9.4	0.4	0
HAMPTON JCT	NV		10	Cave			0.4	0.4	õ	0.4	0.4	0
IC JCT	NU	ALEXANDER		CONT				0.6	ò	0.6	0.6	0
BERRYBURG JCT	WV	SENTINAL		Cakt						0.1	0.1	0
CENTURY JCT	wv	CENTURY	NV	CJAT	:		0.1			0.2	0.2	0
NN TONER	wv	DONALDSON W	WV	CSXT			0.2	0.2		0.1	0.1	ō
DONALDSON W	w	BECKLEY NO 1	WV	CSXT	19		0.1	0.1			16	ō
ST ALBANS	w	SPROUL	w	CSXT	15	0	10					
SPROUL	w	MADISON	wv	CSXT	22	0	9.6	9.6			2.0	
MADISON	w	CLOTHIER	w	CSXT	12	0	,	3	0			
CLOTHIER	w	SHARPLES	w	CSXT	3	0	2.6	2.6	0	2.6	2.6	ů.
SHARPLES	WV	MONCLO	WV	CSXT	1	0	2.6	2.6	0	2.6	2.6	0
BARBOURSVILLE	w	LOGAN	w	CSXT	65	0	6.6	6.6	0	6.6	6.6	0
LOGAN	WV	STOLLINGS	NV.	CSXT	2	0	1.2	4.2	0	4.2	4.2	0
STOLLINGS	WV	RUM JCT	w	CSXT	3	0	4.2	4.2	0	4.2	4.2	0
RUM JCT	WV	GILBERT YARD	w	CSXT	21	0	1	3	0	3	, ,	0
MEADON CRK	WV	RAINELLE JCT	w	CSXT	20	0	1.3	1.3	0	1.3	1.3	0
RAINELLE JCT	NV	SHISS JCT	w	CSXT	47	0	0.9	0.9	0	0.9	0.9	0
RAINELLE JCT	WV	CLEARCO	w	CSXT	24	0	0.5	0.5	0	0.5	0.5	0
GREENBRIR E J	WV	PEASER JCT	W	CSXT	13	0	0.5	0.5	0	0.5	0.5	0
PRASER JCT	w	LEE	w	CSXT	1	0	0.5	0.5	0	0.5	0.5	0
PRINCE	WV	GLEN DANIELS JC	w	CSKT	27	0	2.5	2.5	0	2.5	2.5	0
BALFIGH	w	STONE COAL JCT	WV	CSXT	20	0	0.1	0.1	0	0.1	0.1	0
BRCKIPY ICT	W	CRANBERRY	w	CSXT	6	0	0.1	0.1	0	0.1	0.1	0
CLEN DANTELS JC	WV	MAPLE MEADON	WV	CSXT	4	0	2.5	2.5	0	2.5	2.5	0
Chilley BD	w	RICH CRK JCT	WV	CSXT	7	0	0.1	0.1	0	0.1	0.1	0
WADLET DA	NV	HARRIS	WV	CSXT	30	0	6.4	6.4	0	6.4	6.4	0
HADISON ICT	NT/	BOBIN HOOD	WV	CSXT		0	0.6	0.6	0	0.6	0.6	0
VAN JCT		HOLEBOOK	NV	CSXT	2	0	0.6	0.6	0	0.6	0.6	0
NOBINSON CAR JC	ANJ.	PLY DIN JCT	NU	CSXT	34	0	6.4	6.4	0	6.4	6.4	0
SPROUL		INAROLOS VALL	NV	CSKT	1	0	1.9	1.9	0	1.9	1.9	0
BLK NUN JCT	-	BRENTER NO S	W	CSXT	10	0	1.2	1.2	0	1.2	1.2	0
SETH			NV	CSXT		ō	1.9	1.9	0	1.9	1.9	0
JARROLDS VALL	ww	PETTUS	-	Care	;	õ	1.4	1.4	0	1.4	1.4	0
PETTUS	NV	PARFORM		Cave			0.6	0.6	0	0.6	0.6	0
PETTUS	WV	SUNDLAL		Cave				1.2	ò	1.2	3.2	0
WYLO	wv	ELK CRK NO I	NV	LJAT						1.9	1.4	0
MAN	WV	BUFFALO MINE	WV	CSAT						0.1	0.1	0
SNAP CRK JCT	wv	DON	WV	CSXT			0.1	0.1		0.1	0.1	ů
RUM JCT	wv	MACGREGOR	WV	CSXT	•		0.5	0.5				ő
STOLLINGS	WV	BAND MILL JCT	WV	CSXT			0.1	0.1		0.1	0.1	õ
BAND MILL JCT	w	MELVILLE	WV	CSXT	1		0.1	0.1				č
LOGAN	WV	TRACE JCT	WV	Caxt	1							ě
MONITOR JCT	WV	CHAR	W	CSXT		0						
LOGAN	w	HOBET NO 7	WV	CSXT		0	1.4					
LEVISA JCT	KY	SLONES BRANCH	KY	CSXT	1		0.3	0.5		0.5	0.5	
RUN JCT	WV	ISLAND CRK NO 2	WV	CSXT	•	0	0.3	0.3	0	0.5	0.3	v

Operating Plan Attachment 13.5 Page 8 of 10

COX TRAIN DENSITIES

	BEGMENT						1995 ADJ BAR		-1808	ACQUISITION	TRNS/DAY	
PROM STATION		TO STATION		ROAD	HILES	-	PREIGHT	TOTAL	PROR	PREICHT	TOTAL	OF TRNS/DAT
GLADE CRK JCT	w	CAREN	w	CSXT	,		0.1	0.1	0	0.3	0.3	0
DANKINS	KY	SKYLINE	KY	CSXT	15	o	0.7	0.7	0	0.7	0.7	0
SHELAY JCT	KY	MYRA 1	KY	CSXT	15	ō	1.4	1.4	o	1.4	1.4	0
COALBUN	KY	BURKE STATION	KY	CSXT	31	ō	3.6	3.0	ō	3.0	3.8	0
PPUNINGTON	VA	ST CHARLES	VA	CSXT		0	0.6	0.6	ō	0.6	0.6	0
ST CHARLES	VA	TURNERS STA	VA	CAXT		õ	0.1	0.1	0	0.1	0.1	0
PASKPOT	Va	ST CHARLES	VA	CSAT		õ	0.5	0.5	ō	0.5	0.5	0
CAUCY	-	CATLIFF	KY	CANT		ő			ō		1	0
WEIDBICK	~	HORSE CON ICT	-	Care	22	ě	0.2	0.2	õ	0.2	0.2	0
METORICK		NORSE CER SCI		Cave				0.5	ò	0.5	0.5	ō
PASKERT	VA	MIDDLER		CONT			0.1	0.1	ě	0.1	0.1	ő
HARBELL	KT	MIDDLESBORO	NI NY	CSAT	10		0.5	0.5	ě	0.1	0.1	ő
CATO	KI	POPEVILLE		CONT			0.1	0.1	ě	0.1	0.1	ő
CATO	KT	CROMMIES	KT I	CSAT	:		0.1	0.1	ě	0.1	0.1	ő
MIDDLESBORO	KT	STONY FORK JCT	AT	CSAT			0.5	0.5		0.1	0.1	ő
STONY FORK JCT	KY	BURLET	NT NT	CSAT	:		0.3	0.5	ě	0.1	0.1	ő
GLIDDEN	KT	CREECH	NT.	CSAT								õ
STRAIGHT CRK	KY	CLOVER	KT	CSAT	21							
STRAIGHT CRK	KY	HEYBURN	KY	CSXT		0	1.2	1.2		1.2		ě
HEYBURN	KY	WEN-LAR	KY	CSXT	!	0	1.2	1.2		1.4	1.2	
TYPO	KY	WAHOO	KY	CSXT		0	0.4	0.4		0.4		ě
JEFF	KY	KENMONT	KY	CSXT	-	0	1.1					
BLACKEY	KY	HOT SPOT	KY	CSXT		0	0.9	0.9		0.9	0.9	
JEFF	KY	VICCO	KY	CSXT	•	0	1	1.0		1.0	1.0	
PAT	KY	SAPPHIRE	KY	CSXT	2	0	2.2	2.2		2.2	2.2	
BAXTER	KY	CLOVERLICK JCT	KY	CSXT	21	0	3.3	3.3	0	3.3	3.3	0
CLOVERLICK JCT	KY	LYNCH 3	KY	CSXT	1	0	3.1	3.1	0	3.1	3.1	0
HARLAN	KY	PARKDALE	KY	CSXT	•	0	1.2	1.2	0	1.2	1.2	0
PARKDALE	KY	PILLSBURY	KY	CSXT	1	0	0.9	0.9	0	0.9	0.9	0
PILLSBURY	KY	HIGHSPLINT	KY	CSXT	6	0	0.9	0.9	0	0.9	0.9	0
HIGHSPLINT	KY	GLENBROOK	KY	CSXT	13	0	0.3	0.3	0	0.3	0.3	0
BUFFEN	KY	BLUE GRASS	KY	CSXT	3	0	0.2	0.2	0	0.2	0.2	0
DRESSEN	KY	GULSTON	KY	CSXT	4	0	0	0	0	0	0	0
GULSTON	KY	BARDO	KY	CSXT	3	0	0	0	0	0	0	0
N. HAZARD	KY	DUANE	KY	CSXT	•	0	2.7	2.7	0	2.7	2.7	0
PARKDALE	KY	KENVIR 3	KY	CSXT	1	0	0	0	0	0	0	0
HIGH SPRINGS	FL	NEWBERRY	FL	CSXT	42	0	2.9	2.9	0	2.9	2.9	0
STARKE	FL	NEWBERRY	FL	CSXT	40	0	3.0	3.8	0	4.4	4.4	0.6
NEWBERRY	FL	DUNNELLON	FL	CSXT	47	0	2.9	2.9	0	3.5	3.5	0.6
DUNNELLON	PL.	RED LEVEL JCT	FL	CSXT	10	0	2.9	2.9	0	3.5	3.5	0.6
VITIS		LAKELAND	FL	CSXT	19	2	16.4	10.4	2	16.4	10.4	0
TAKPLAND		RATON PARK	FL	CSXT	5	0	0.2	0.2	0	0.2	0.2	0
BADTON		BOWLING GREEN	FL	CSXT	19	0	3.2	3.2	0	3.2	3.2	0
BUDNETTS LAKE		GAINESVILLE	FL	CSXT	14	0	3.4	3.4	0	3.4	3.4	0
CIPADUATED		ST PETERSBURG		CSXT	15	0	0.6	0.6	0	0.6	0.6	0
		KPUKA		CAXT	11	Ö	0.9	0.9	0	0.9	0.9	0
NUMPEON NE		MILBERRY		CAXT	12	õ	1.9	1.9	0	1.9	1.9	o
WINSTON .		MILAPODY		Cave		ē	24	24	0	24	24	0
ACIUM		BOWNER		Cave		ě		10	ō	10	10	ő
ACIDAN		COPPN BAY		Cave		ě		-	ō			õ
ACHAN		NOBALYN		Can		ě		i	ő	1		ő
GREEN BAY	TL.	CORP. BAY		CONT	:			-	ő	-		
AGRICOLA	TL	GREEN BAT		CONT				24 4	ő	25.0	25.0	
YEOMAN YARD	FL	SUTTON	1L	CANT	,							•

Operating Plan Attachment 13.5 Page 9 of 10

CEX TRAIN DENSITIES

	BEGENT CALLER							12	POST	ACQUISITION	TRNS/DAY	CHANGE IN 8
PROH STATIC	M	TO STATION		ROAD	HILLS	1100	TREIGHT	TOTAL	PECR	THE LONT_	TOTAL	OF TRNS/DAT
				Caxt		0	27.1	27.1	0	27.1	27.1	0
SUTTON		ONECO	PL.	CSXT	20	0	2.8	2.8	0	2.8	2.8	0
BIG BENU JCT		STANS CITY		Cave	ii	ā	10.9	10.9	0	10.9	10.9	O
NELCOME JCT					-;		10.9	10.9	0	10.9	10.9	0
EDISON JCT	FL	WELCOME JCT		COAT				24	â	24	24	0
EDISON JCT	FL	MULBERRY	TL.	CSRT						9.1	9.1	0
ALERT	FL	BARTON	FL	CSXT	,		7.3	2.3		17	12	0
EDISON JCT	TL.	BREWSTER	FL	CSXT	11	0	12	12			12	0
BREWSTER	FL	AGROCK	1L	CSXT	•	0	12	12				
AGROCK	1L	FOUR CORNERS	FL	CSXT	12	0	1.1	1.1	U	1.1	1.1	
AGROCK	FL	ARCADIA	TL	CSXT	35	0	0.6	0.6	0	0.6	0.0	
ADDUGTED		LONESCHE	TL	CSXT	12	0	1	1	0	1	1	0
BRENJIEN ICT		PIERCE	TL	CSXT	6	0	12	12	0	12	12	0
BRADLET SCI		PIERCE	FL	CSXT	5	0	1.5	1.5	0	1.5	1.5	0
ACTIVA		BONNTE	PL.	CSXT	2	0	•	•	0	•	•	0
ALERT		ACRICOLA		CSXT	7	0	12	12	0	12	12	0
BRADLEY JCT		BOCKLAND ICT	Pl.	Caxt		0	•		0	•	•	0
AGRICOLA	FL.	ROCKLAND JCI		Care	10	õ	0.0	0.8	0	0.8	0.8	0
HIALEAN	TL	HOMESTEAD						1.2	0	1.2	8.2	0
GARY	FL	SULPHUR SPRGS		U.SAT				2.2	0	2.2	2.2	0
SULPHUR SPRGS	FL	CLEARWATER		CSAT				20.4	ō	20.4	20.4	0
WELCOME JCT	FL	VALRICO	TL	CSXT	12					1.2	1.2	0
SULPHUR SPRGS	TL	ROCK	FL	CSXT	45	•	1.2	1.2		•••		

CR TRAIN DENSITIES

	BEGMENT						1995 ADJ BAR		POST	-ACQUISITION	TRNS/DAY	CHANGE IN .
PROM STATI	ON	TO STATION		ROAD	HILSS	PACE	PREIONT	TOTAL	PEOR	PREIGHT	TOTAL	OP TRNS/DAT
Columbus	OH	Hocking	OH	CR	1	0	13.4	13.4	0	9.5	9.5	-1.9
Galion	OH	Columbus	OH	CR	\$7.7	0	11.4	13.4	0	7.5	7.5	-5.9
Beres	OH	Greenvich	OH	CR	42	0	14.5	14.5	0	54.2	54.2	39.7
Greenwich	OH	Crestline	OH	CR	21.2	0	14.5	14.5	0	31.3	31.3	16.0
Crestline	011	Gelion	OH	CR	3.3	0	20.3	20.3	0	26.5	26.5	-1.8
Galion	OH	Marion	011	CR	22.5	0	10.6	10.6	0	23.6	23.6	5
Marion	Oll	Ridgeway	OH	CR	23.2	0	16.1	16.1	0	31.8	31.0	15.7
Ridgeway	OH	Sidney	011	CR	30.3	G	24.2	24.2	0	31	31	6.8
Sidney	011	So. Anderson	IN	CR	\$5.6	0	29.4	29.4	0	26.7	26.7	-2.7
So. Anderson	IN	Indianapolis	IN	CR	35.1	0	32	32	0	25.7	25.7	-6.3
Indianapolis	IN	Avon	11	CR	12.5	0	26	26	0	21.7	21.7	-4.3
Avon	IN	Greencastle	IN	CR	27.5	0	23	23	0	19.9	19.9	-3.1
Greencastle	IN	Terre Haute	IN	CR	32	0	26.4	26.4	0	19.9	19.9	-6.5
Terre Haute	IN	Effingham	IL	CR	60.6	9	23.8	23.8	0	16.1	16.1	-7.7
Effingham	IL	St. Elmo	IL	CR	13.7	0	22.3	22.3	0	14.1	14.1	-8.2
St. Elmo	IL	E. St. Louis	IL	CR	82.7	0	16	16	0	9.1	9.1	-6.9
Terre Haute	IN	Paris	IL	CR	21.5	0	1.6	1.6	0	1.7	1.7	0.1
Paris	IL	Chrieman	IL	CR	10.6	0	1.8	1.6	0	0	0	-1.6
Chrisman	IL	Danville	IL	CR	24.9	0	1.6	1.6	0	0	0	-1.6
Denville	IL	Olin	IN	CR	11.3	0	1.0	1.0	0	1.0	1.0	0
Indianapolis	IN	Kraft	IN	CR	3	1.1	7.0	9.2	1.4	9.8	11.2	2
Ktaft	IN	Avon	IN	CR	5.6	1.4	9.6	11	1.4	11.6	13	2
Avon	IN	Clermont	IN	CR	•	1.4	1.1	10.2	1.4	8.9	10.3	0.1
Clermont	IN	Cravfordeville	IN	CR	34.2	1.4	7.4	1.1	1.4	7.5	8.9	0.1
Clermont	IN	Frankfort	IN	CR	37.2	0	1.4	1.4	0	1.4	1.4	0
Shelbyville	IN	Indianapolis	IN	CR	28.3	0	1.6	1.6	0	1.6	1.6	0
Stanley	OH	Dunkirk	OH	CR	\$7.2	0	11.6	11.6	0	1.4	1.4	-10.2
Dunkirk	OH	Ridgeway	OH	CR	21.1	0	13.2	13.2	0	1.4	1.4	-11.0
Ridgeway	011	Maryaville	OH	CR	22.2	0	22.2	22.2	0	9.4	9.4	-12.8
Marysville	011	Derby	OH	CR	19.2	0	22.2	22.2	0	5	5	-17.2
Darby	OH	Mounds	OH	CR	2.6	0	2.2	2.2	0	2	2	-0.2
Mounds	011	Scioto	OH	CR	5.8	0	2.2	2.2	0	2	2	-0.2
Crestline	OH	Bucytus	OH	CR	11.9	0	6.5	6.5	0	14.5	14.5	•
Bucyrus	OH	Adams	IN	CR	113.5	0	5.9	5.9	0	13.9	13.9	•
Adams	IN	Pt. Wayne	IN	CR	5	0	5.9	5.9	0	13.9	13.9	•
Ft. Wayne	IN	Watsav	IN	NS	39.7	0	2.4	2.4	0	6.4	6.4	•
Natsav	1N	Tolleston	IN	NS	03.1	0	1	1	0	5	5	
Tolleston	IN	Clark Jet	IN	CR	3.9	0	0	0	0	5	5	5
Decatur	IN	Adams	IN	CR	16.2	0	1.4	1.4	0	1.4	1.4	0
Buffalo	NY	Drev	NY	CR	1.7	2	55.0	\$7.8	2	58.5	60.5	2.7
Draw	NY	Buff Crk Jet	NY	CR	0.4	2	55.8	57.8	2	52.5	54.5	-3.3
Buff Crk Jct	NY	Buff Seneca	NY	CR	3.3	2	55.0	57.0	2	52.5	54.5	-3.3
Buff Seneca	NY	Ashtabula	OH	CR	122.0	2	50.1	52.1	2	50.8	52.8	0.7
Ashtabula	OH	Quaker	OH	CR	46.5	2	48.3	50.3	2	54.2	56.2	5.9
Quater	OH	Drevbridge	OH	CR	7.6	2	53.4	55.4	2	12.9	14.9	-40.5
Porter	IN	Willow Creek	IN	CR	6	0	9.6	9.6	0	0	0	-9.6
Willow Creek	IN	Ivenhoe	IN	CR	12.0	0	9.6	9.6	0	11.4	11.4	1.0
Woodville	OH	Welbridge	OH	CR	13.5	0	2.0	2.0	0	2.8	2.0	0
CP Maumee	OH	Oak	OH	CR	1	0	15.2	15.2	0	•	•	-11.2
Oak	OH	Walbridge	OH	CR	1.7	0	15.2	15.2	0	•	•	-11.2
Quaker	OH	Mayfield	OH	CR	5.0	0	5.0	6.0	0	43.0	43.0	37
Mayfield	OH	Marcy	OH	CR	3.3	0	3.4	3.4	0	43.8	43.0	40.4

Operating Plan Attachment 13.6 Page 1 of 3

CR TRAIN DENSITIES

Adda Lake

BEGMENT								POST-	ACQUISITION	TRNS/DAY	CHANGE IN .	
PROM STATION		TO STATION		ROAD	HILSS		PREICHT	TOTAL	PEOR	PREIGHT	TOTAL	OF TRNS/DAT
Marcy	011	Short	011	CR		0	16.4	16.4	0	45.8	45.0	29.4
Short	OH	Beres	OH	CR		0	13.4	13.4	0	47.3	17.3	33.9
Readville	MA	Boston	MA	MBTA	9.1	120	0.1	120.1	120	0.1	120.1	0
Manafield	MA	Readville	MA	MBTA	15.5	70	•	74	70	•	74	0
Attleboro	MA	Mansfield	MA	MBTA	7.2	44	•	40	44	•	40	0
MB/RT	RI	Attleborg	MA	MBTA	6.1	24	2	26	24	2	26	0
Bridgeport	CT	New Haven	CT	CDOT	16	102	3	105	102	3	105	0
Norvalk	CT	Bridgeport	CT	CDOT	15.5	92	2	91	92	2	94	0
New Rochelle	NY	Norvalk	CT	CDOT	25	192	5	197	192	5	197	0
Maciller	NY	New Rochelle	NY	MOUR	4.5	176	2	178	176	2	178	0
NOOTTAVI		Noodlawn	NY	MUR	6.4	332	2	334	332	2	334	0
MO Dimes	~	Cadar Hill	CT	CR	7	0	2	2	0	2	2	0
Mill Fiver	MA	Valacia	MA	MATA	10	32		38	32	6	38	0
Readville		Franklin	MA	MOTA	1.9	28	2	30	20	2	30	0
Nalpole		franktin Fourt	MA	MATA	9.5	11	2	35	33	2	35	0
Transfer		10001	10	C9	11.4	0	1.6	1.6	0	1.6	1.6	0
Attleboro		Catlan			1.4	õ	3.6	3.6	0	3.6	3.6	0
Dean		Cottey New Peddeed	-		18.4			1	0	1	1	0
Neir	PIA IO	Nev Beatora		C.	12	õ	1	1	0	1	1	0
Svamp		lasminator	HO	CR	4.1	õ	1.6	1.6	0	1.6	1.6	0
Fitchburg		Burg .	10	CR	26.2	0	1.6	1.6	0	1.6	1.6	0
Leominster		Franingham Cantar	10	CR	4.5	ō	1.6	1.6	0	1.6	1.6	0
Buro		Valacia Concor	MA	CR	0.5	ō		•	0		•	0
Manstleid		Meddlald Jet	MA	CR	5.2	0		6	0	6	6	0
Walpole Maddiald		Freninghan	MA	CR	7.3	0	6	6	0	6	6	0
Meatield Jet	10	Frantashan	10	CR	10.1	30	9.3	47.3	38	0.7	46.7	-0.6
Boston Beacon Fark		Neetborg	-	C.8	11.9	12	11.1	27.1	12	14.4	26.4	-0.9
Framingham		Nescoster		CR		12	15.3	27.3	12	14.4	26.4	-0.9
Nestboto		Balaas	-	C2	1.		20.1	24.3		19.9	23.9	-0.4
Worcester		for instiald	-	CR	15.3		22.3	20.3	6	21.9	27.9	-0.4
Palmer		Springrieid	-	CR		2	22.1	24.3	2	22.1	24.1	-0.2
Springrieid		telbist	NY	CR		2	24.3	26.3	2	24.1	26.1	-0.2
Westfield		Service Street			2.1	ā	1	1	0	1)	0
Selkirk	**	Fort of Kideny	NY	CR	1.7	õ	1.6	1.6	0	1.6	1.6	0
Carman		Bouchteenete	NY	MIR	70.1	140		146	140	6	146	0
MO	NT	Pougnicopere	NY	CB	50.1	20		24	20	•	24	0
Poughkeepsie		Beneraliset	NY	CR	16.4	20	1	21	20	1	21	0
Stuyvesent	NY	Rensseleer	-		10.2				0	4		0
Stuyvesant	NY	Solklik			25.4		10.7	10.7	0	45.2	45.2	6.5
Selkick	NT	Hottmans		CR			1.4	17.4	14	3.4	17.4	0
Rensselaer	NY	WAlbeny	NI					7.4	7.4	0.1	7.5	0
W Albany	NY	Horrmans	NI	APU A			10.1	45.7	7.4	44.4	52.2	6.5
Hoffmans	NY	Utica		CR			16.4		7.4	41.4	50.8	6.5
Utica	NY	Syracuse	NI	CR	50.0					46.6	51.7	6.6
Syracuse	NY	Syracuse Jct	NT	CR	3.3		10.0				51.9	6.6
Syracuse Jet	NY	Solvay	NT	CR							51.9	5.1
Solvey	NY	Lyons	MT	CR			10.0		7.1	45.1	\$2.2	5.1
Lyons	NY	FAIrport	NT	CR	10.3		11.4	10.9	7.1	16.5	41.6	4.7
Fairport	NY	Rochester	HI	CR	10.7		11.1	40.5	1.1	36.9	44	1.1
Rochester	NY	Chill	MT	CR			10.4	47.7	7.1	45.9	51	5.1
Chili	NY	Frontier	NT	CR					11	49.5	56.6	-1.1
Frontier	NY	Buttalo	NT	CR			22.0					0
Lock	NY	CP39	WY	CR	2.7	U	•	•				

Operating Plan Attachment 13.6

CR TRAIN DENSITIES

	BEGMENT								POST	ACQUISITION	TRNS/DAY	CHANGE IN .
PROM STATION		TO STATION		ROAD	MILLE	-	PREIGHT	TOTAL	PROR	FREIGHT	TOTAL	OF TRNS/DAT
Westerd		Fort	NY	CR	25.8	0			0			0
WOOdard Coto		C#22	NY		11.6	0	7.2	7.2	0	7.2	7.2	0
erss .	NY	CP Sucamore	NY	CR	1.2	0	,	,	0	14	14	5
Ch Sucamora	NY	Black Rock	HY	CR		0	13	13	0	10	10	5
durante durante	NY	Osveso	NY	CR	30	0	1.0	1.0	0	1.0	1.0	0
Buffelo	NY	Black Rock	NY	CR	7.1	5.1	1.6	6.7	5.1	1.6	6.7	0
Black Bock	NY	Niegers Falls	NY	CR	21.1	5.1	23	28.1	3.1	22	27.1	-1
Falroatt	NY	Geneses Jct	NY	CR	14.3	0	11.4	11.4	0	11.2	11.2	-0.2
Canada let		Chili	NY	CR	7.1	0	11.4	11.4	0	11.0	11.9	0.4
Survey Set		Nooderd	NY	CR	4.2	0	10	10	0	10	10	0
Nooderd	NY	Philadelphia	NY	CR	83.6	0	7	7	0	7	7	0
Philadelphia	NY	Massens	NY	CR	71	0	11	11	0	11	11	0
Massena	NY	Huntingdon	10	CR	38.9	0	7	7	0	7	,	0
theat ingdon	PO	Cecile Jet	01	CR	14.4	0	•	•	0	•	•	0
Cacila det	PO	Adirondack Set	01	CR	24.3	0	2	2	0	2	2	0
Pagia	NY	Philadelphia	NY	CR	11.3	0	1.0	1.0	0	1.0	1.0	0
Ridgefield Heights	NJ	Nevburgh	NY	CR	44.9	0	23.6	23.6	0	24.8	24.0	1.2
Newburgh	NY	Selbick	NY	CR	80.1	0	22.2	22.2	0	23.4	23.4	1.2
Nextown Jct	PA	Quetestown	PA	SEPTA	35.8	145	1.6	146.6	145	1.6	146.6	0
Gleneide	PA	Werminster	PA	SEPTA		40	1.6	41.6	40	1.6	41.6	0
Jentintown	PA	Neshaminy Falls	PA	SEPTA	10.3	44	1.6	45.6	44	1.6	45.6	0
Lanadala	PA	Doylestown	45	SEPTA	10.1	34	1.6	35.6	34	1.6	35.6	0
Park Jet	PA	Belmont	PA	CR	0.9	0	17	17	0	10.3	10.3	1.3
Reimont	PA	Nest falls	PA	CR	1.3	0	24.5	24.5	0	27.1	27.1	2.6
Nest Falls	PA	CP Newtown Jct	PA	CR	3.7	0	11.1	11.1	0	11.4	11.4	0.3
CP Newtown Jct	PA	CP Wood	PA	CR	20.7	48	12	60	40	11.4	59.4	-0.6
CP Nood	PA	Trenton	NJ	CR	5.7	48	14.3	62.3	48	10	50	
frenton	NJ	CP Pt Reading	NJ	CR	24.7	0	15.7	15.7	0	11.4	11.4	-4.3
BC.	PA	Field	PA	CR	2	0	0	0	0	16	16	16
South Hufladelphia	PA	Field	PA	CR	5	0	0.2	0.2	0	21.1	21.1	12.9
Field	PA	Belmont	24	CR		0	1.2	0.2	0	15.8	15.0	7.6
fandauer.	MD	Anacostia	DC	CR	5.4	0	3.4	3.4	0	9.1	9.1	5.7
Landovel	bC	Vitalala Ave	DC	CR	2.5	0	19.3	19.3	0	28.6	20.6	9.3
Viccinia Ave	DC	Potomac vard	VA	CR		35	17.9	52.9	35	28.6	63.6	10.7
Brandwyine	DE	Chalk Pt	MD	CR	17.3	0	1.4	1.4	0	1.4	1.4	0
Bowie	HO	Brendyvine	HD	CR	24.9	C	1.0	1.0	0	1.0	1.0	0
Brandywine	MD	Horgantova	MD	CR	20.7	0	1	1	0	1	•	U

Operating Plan Attachment 13.6

10.

Page 3 of 3

and the local division of the local division

-

The off Labor off to She and Land

						ADJ. 1995	POST-	
	SEG	MENT				BASE	ACQUISITION	CHANGE IN TONS/YR
FROM STATIO	N	TO STATION		ROAD	MILES	TONS	TONS	
PARK JCT	PA	RG	PA	CSXT	4	45	24	-475
RG	PA	WILSMERE	DE	CSXT	26	40	49	231
WILSMERE	DE	BALTIMORE	MD	CSXT	68	44	50	145
BALTIMORE	MD	RELAY	MD	CSXT	7	64	70	119
RELAY	MD	JESSUP	MD	CSXT	7	46	58	261
JESSUP	MD	ALEXANDRIA JCT	MD	CSXT	17	48	70	45%
ALEXANDRIA JCT	MD	WASHINGTON	DC	CSXT	5	35	56	631
WASHINGTON	DC	PT OF ROCK	MD	CSXT	43	38	56	485
PT OF ROCK	MD	HARPERS FERRY	WV	CSXT	13	58	76	301
HARPERS FERRY	WV	CHERRY RUN	WV	CSXT	32	58	75	291
CHERRY RUN	WV	CUMBERLAND	MD	CSXT	65	62	67	91
CUMBERLAND	MD	SINNS	PA	CSXT	133	41	54	331
SINNS	PA	RANKIN JCT	PA	CSXT	9	40	72	776
RANKIN JCT	PA	NEW CASTLE	PA	CSXT	51	41	72	745
NEW CASTLE	PA	YOUNGSTOWN	OH	CSXT	18.3	54	79	461
YOUNGSTOWN	OH	STERLING	OH	CSXT	79.1	54	66	241
STERLING	OH	GREENWICH	OH	CSXT	37.1	55	62	131
GREENWICH	OH	WILLARD	OH	CSXT	11.6	56	109	961
WILLARD	OH	FOSTORIA	OH	CSXT	36.8	56	110	971
FOSTORIA	Oll	DESHLER	OH	CSXT	26	61	70	151
DESHLER	OH	WILLOW CREEK	IN	CSXT	174	45	94	111\$
WILLOW CREEK	IN	PINE JCT	IN	CSXT	12	34	70	1051
PINE JCT	IN	BARR YD	IL	CSXT	11	41	65	581
RELAY	MD	PT OF ROCK	MD	CSXT	58	19	21	81
HAGERSTOWN	MD	LURGAN	PA	CSXT	34	4	2	-331
HAGERSTOWN	MD	CHERRY RUN	MD	CSXT	19	6	2	-591
ROCKWOOD	PA	JOHNSTOWN	PA	CSXT	45	1	1	01
LESTER	OH	LORAIN	OH	CSXT	23	1	1	01
STERLING	OII	LESTER	OH	CSXT	16	7	7	71
LESTER	OH	CLEVELAND	OH	CSXT	30	6	7	195
DETROIT	MI	PLYMOUTH	MI	CSXT	25	13	11	-136
PLYMOUTH	MI	GRAND RAPIDS	MI	CSXT	124	13	10	-271
GRAND RAPIDS	MI	WAVERLY	MI	CSXT	26	8	6	-321
WAVERLY	MI	PORTER	IN	CSXT	110	9	3	-621
SAGINAW	MI	FLINT	MI	CSXT	29	10	12	185
FLINT	MI	HOLLY	MI	CSXT	28	15	18	221

The Add Mary Mary

Station B

359

						ADJ. 1995	POST-	
	SEG	MENT				BASE	ACQUIBITION	CHANGE
FROM STATIO	M	TO STATION		ROAD	MILES	TONS	TONS	IN TONS/IR
HOLLY	MI	WIXOM	MI	CSXT	20	15	17	200
WIXOM	MI	PLYMOUTH	MI	CSXT	12	16	19	145
PLYMOUTH	MI	WAYNE	MI	CSXT	8	51	53	45
WAYNE	MI	CARLETON	MI	CSXT	15	44	57	30
CARLETON	MI	TOLEDO	MI	CSXT	16.5	40	64	61
CINCINNATI	OH	HAMILTON	OH	CSXT	21	55	64	165
HAMI LTON	OH	DAYTON	OH	CSXT	34	50	50	19
DAYTON	OH	SIDNEY	OH	CSXT	37.3	44	63	425
SIDNEY	OH	LIMA	OH	CSXT	35.2	44	44	0
1.1 MA	OH	DESHLER	OII	CSXT	33	44	40	-85
DESHLER	OH	TOLEDO	OH	CSXT	36	0	50	10000
FOSTORIA	OH	TOLEDO	OH	CSXT	29	67	79	195
MARION	OH	FOSTORIA	OH	CSXT	40	40	63	561
COLUMBUS	OH	MARION	OH	CSXT	20	40	44	10
N J CABIN	KY	COLUMBUS	OH	CSXT	53	40	42	45
CINCINNATI	OH	COLUMBUS	OH	CSXT	112	4	5	251
HAMPTON	VA	RIVANNA JCT	VA	CSXT	80	38	38	-19
RIVANNA JCT	VA	CLIFTON FORGE	VA	CSXT	229	54	53	-19
CLIFTON FORGE	VA	ST ALBANS	WV	CSXT	195	57	60	51
ST ALBANS	WV	BARBOURSVILLE	WV	CSXT	29	68	66	-31
BARBOURSVILLE	WV	HUNTINGTON	WV	CSXT	10	71	69	-21
HUNTINGTON	WV	KENOVA	WV	CSXT	8	62	67	81
KENOVA	WV	BIG SANDY JCT	WV	CSXT	1	59	66	115
BIG SANDY JCT	KY	ASILAND	KY	CSXT	6	96	95	-31
ASHLAND	KY	RUSSELL	KY	CSXT	4	107	103	-41
RUSSELL	KY	N J CABIN	KY	CSXT	19	67	68	21
N J CABIN	KY	COVINGTON	KY	CSXT	121	27	31	145
CUMBERLAND	MD	W VIRGINIA C	WV	CSXT	28	23	31	321
W VIRGINIA C	WV	MK JCT	WV	CSXT	46	20	27	361
MK JCT	WV	GRAFTON	WV	CSXT	26	20	27	361
GRAFTON	WV	BERKELEY JCT	WV	CSXT	2	21	23	115
BERKELEY JCT	WV	SHORT LINE JCT	WV	CSXT	21	7	7	-81
BROOKLYN JCT	WV	SHORT LINE JCT	WV	CSXT	58	6	6	-51
PARKERSBURG	WV	BROOKLYN JCT	WV	CSXT	55	7	7	01
PARKERSBURG	WV	HUNTINGTON	WV	CSXT	119	9	9	0
BROOKLYN JC	WV	BENWOOD JCT	WV	CSXT	34	4	5	45

1-

-

Operating Plan Attachment 13.8

Page 2 of 14

	SEG	MENT				ADJ. 1995	POST- Acouisition	
FROM STATIO	N TO STATION		ROAD	MILES	TONS	TONS	IN TONS/YR	
RIVANNA JCT	VA	CHARLOTTESVILLE	VA	CSXT	98	3	3	91
CHARLOTTESVILLE	VA	CLIFTON FORGE	VA	CSXT	103	3	3	5\$
MUNSTER	IN	MONON	IN	CSXT	62	3	4	195
MONON	IN	LAFAYETTE	IN	CSXT	30	4	5	251
LAFAYETTE	IN	CRAWFORDSVILLE	IN	CSXT	29	9	10	76
CRAWFORDSVILLE	IN	GREENCASTLE	IN	CSXT	31	4	2	-541
HAMI LTON	OH	INDIANAPOLIS	IN	CSXT	99	6	8	345
CINCINNATI	OH	MITCHELL	IN	CSXT	128	14	1	-941
MITCHELL	IN	VINCENNES	IN	CSXT	62	21	4	-825
VINCENNES	IN	SALEM	IL	CSXT	79	24	13	-431
SALEM	IL	E. ST LOUIS	IL	CSXT	68	20	13	-345
DOLTON	11.	DANVILLE	IL	CSXT	106	31	40	291
DANVILLE	11.	TERRE HAUTE	IN	CSXT	57	40	52	281
TERRE HAUTE	IN	VINCENNES	IN	CSXT	54	40	63	561
VINCENNES	114	EVANSVILLE	IN	CSXT	53	45	78	751
EVANSVILLE	IN	AMOUI	TN	CSXT	137	48	74	531
AMOUT	TN	NASHVILLE	TN	CSXT	16	80	104	301
HASHVILLE	TN	DECATUR	AL	CSXT	118	41	60	475
DECATUR	AL	BLACK CREEK	AL	CSXT	89	38	60	551
BLACK CRK	AL	BIRMINGIAM	AL	CSXT	5	49	67	371
BIRMINGHAM	A'.	PARKWOOD	AL	CSXT	12	49	67	381
PARKWOOD	AL	MONTGOMERY	AL	CSXT	87	23	28	231
MONTGOMERY	AL	FLOMATON	AL	CSXT	110	23	34	461
ANCHORAGE	KY	WINCHESTER	KY	CSXT	95	3	5	391
WINCHESTER	KY	TYPO	KY	CSXT	123	29	29	01
TYPO	KY	N. HAZARD	KY	CSXT	5	23	23	01
N. HAZARD	KY	LOTHAIR	KY	CSXT	2	24	24	01
LOTHAIR	KY	JEFF	KY	CSXT	5	18	18	01
JEFF	KY	DENT	KY	CSXT	11	15	15	01
DENT	KY	BLACKEY	KY	CSXT	8	11	11	01
BLACKEY	KY	DUO	KY	CSXT	2	9	9	01
DUO	KY	PAT	KY	CSXT	10	9	9	01
PAT	KY	DEANE	KY	CSXT	6	10	10	01
BCC JCT	KY	DEANE	KY	CSXT	22	12	12	01
PORTER JCT	KY	BCCJCT	KY	CSXT	6	13	13	01
STEVENS BRANCH	KY	PORTER JCT	KY	CSXT	12	17	17	01

Operating Plan Attachment 13.8

Page 3 of 14

This is the

						ADJ. 1995	POST-	
SEGMENT				BASE	ACQUISITION	L CHANGE		
FROM STATI	ON	TO STATION	ROAD	MILES	TONS	TONS	IN TONS/YR	
MARTIN	KY	STEVENS BRANCH	KY	CSXT	1	17	17	01
BEAVER JCT	KY	MARTIN	KY	CSXT	5	18	18	01
LATONIA	KY	ANCHORAGE	KY	CSXT	86	31	27	-131
ANCHORAGE	KY	LOUISVILLE	KY	CSXT	13	35	35	-21
LOUISVILLE	KY	AMQUI	TN	CSXT	173	35	32	-91
CINCINNATI	OH	COVINGTON	KY	CSXT	6	76	81	71
COVINGTON	KY	LATONIA	KY	CSXT	1	57	59	31
LATOHIA	KY	WINCHESTER	KY	CSXT	93	27	29	71
WINCHESTER	KY	SINKS	KY	CSXT	56	40	42	48
SHIKS	KY	CORBIN	KY	CSXT	35	41	41	25
CORBIN	KY	CARTERSVILLE	GA	CSXT	263	54	53	-21
CARTERSVILLE	GA	ATLANTA	GA	CSXT	46	82	79	-31
ATLANTA	GA	MANCHESTER	GA	CSXT	78	35	34	-31
MANCHESTER	GA	WAYCROSS	GA	CSXT	203	53	57	91
CORBIN	KY	HEIDRICK	KY	CSXT	15	20	20	01
HEIDRICK	KY	ELYS	KY	CSXT	10	20	20	01
ELYS	KY	YINGLING	KY	CSXT	2	20	20	01
YINGLING	KY	PINEVILLE	KY	CSXT	4	20	20	01
PINEVILLE	KY	HARBELL	KY	CSXT	3	13	13	01
HARBELL	KY	PONZA	KY	CSXT	2	12	12	01
PONZA	KY	CROSBY	KY	CSXT	11	12	12	01
BLACKMONT	KY	CROSBY	KY	CSXT	4	12	12	05
BLACKMONT	KY	KERR	KY	CSXT	9	12	12	01
KERR	KY	BAXTER	KY	CSXT	8	12	12	U
BAXTER	KY	HARLAN	KY	CSXT	2	13	13	05
DRESSEN	KY	HARLAN	KY	CSXT	1	10	10	01
DRESSEN	KY	GLIDDEN	KY	CSXT	5	9	9	01
GLIDDEN	KY	POPEVILLE	KY	CSXT	2	9	9	01
POPEVILLE	KY	KY-VA ST-IN	KY	CSXT	7	9	9	01
KY-VA ST-LN	VA	HAGANS	VA	CSXT	3	9	9	01
HAGANS	VA	PENNINGTON	VA	CSXT	16	9	9	05
PENNINGTON	VA	BIG STONE GAP	VA	CSXT	16	9	9	01
LOUISVILLE	KY	LONG BRANCH	KY	CSXT	18	6	6	-41
LONG BRANCH	KY	SKILLMAN	KY	CSXT	49	9	10	51
SKILLMAN	KY	HENDERSON	KY	CSXT	60	7	7	15
BIG SANDY JCT	KY	ELKHORN CITY	KY	CSXT	127	43	44	21

Operating Plan Attachment 13.8

Page 4 of 14

SEGMENT				ADJ. 1995 BASE	POST- ACQUISITION	CHANGE		
FROM STATIO	N	TO STATION		ROAD	MILES	TONS	TONS	IN TONS/YR
ELKHORN CITY	KY	FRISCO	TN	CSXT	89	31	33	71
FRISCO	TN	BOSTIC	NC	CSXT	157	42	45	91
BOSTIC	NC	SPARTANBURG	SC	CSXT	32	28	30	91
LAURENS	SC	SPI RTANBURG	SC	CSXT	38	27	23	-176
CLINTON	SC	LAURENS	SC	CSXT	11	7	7	01
COLUMBIA	SC	CLINTON	SC	CSXT	63	12	12	01
EASTOVER JCT	SC	CCLUMBIA	SC	CSXT	27	7	7	01
SUMPER	SC	EASTOVER JCT	SC	CSXT	19	5	5	01
SUMTER	SC	LANE	SC	CSXT	40	5	5	01
CHARLOTTE	NC	BOSTIC	NC	CSXT	73	15	17	105
MOHROE	NC	CHARLOTTE	NC	CSXT	24	18	20	105
AUGUSTA	GA	GREENWOOD	SC	CSXT	68	18	17	-21
GREENWOOD	SC	LAURENS	SC	CSXT	28	22	20	-91
ALEXANDRIA JCT	MD	BENNING	DC	CSXT	6	40	51	271
FREDERICKSBURG	VA	POTOMAC YARD	VA	CSXT	49	40	52	291
DOSWELL	VA	FREDERICKSBURG	VA	CSXT	37	41	52	281
RICHMOND	VA	DOSWELL	VA	CSXT	24	44	54	221
S. RICHMOND	VA	WELDON	NC	CSXT	82	47	56	185
WELDON	NC	ROCKY MT	NC	CSXT	37	50	56	121
ROCKY MT	NC	CONTENTNEA	NC	CSXT	19	50	53	61
CONTENTNEA	NC	SELMA	NC	CSXT	22	44	45	21
SELMA	NC	FAYETTEVILLE	NC	CSXT	49	45	45	01
FAYETTEVILLE	NC	PEMBROKE	NC	CSXT	31	44	45	31
PEMBROKE	NC	DILLON	SC	CSXT	21	23	28	241
DILLON	SC	FLORENCE	SC	CSXT	31	34	35	31
FLORENCE	SC	LANE	SC	CSXT	49	29	31	81
LANE	SC	ST STEPHEN	SC	CSXT	8	33	36	71
ST STEPHEN	SC	ASHLEY JCT	SC	CSXT	39	29	31	71
ASHLEY JCT	SC	YEMASSEE	SC	CSXT	54	32	38	175
YEMASSEE	SC	SAVANNAH	GA	CSXT	55	27	33	211
SAVANNAH	GA	JESUP	GA	CSXT	52	47	51	91
JESUP	GA	WAYCROSS	GA	CSXT	39	20	22	105
PEMBROKE	NC	WILMINGTON	NC	CSXT	81	9	11	145
HAMLET	NC	PEMBROKE	NC	CSXT	34	32	32	15
HAMLET	NC	MONROE	NC	CSXT	53	42	43	45
MONROE	NC	CLINTON	NC	CSXT	92	22	29	291

Operating Plan Attachment 13.8

	SEG	MENT				ADJ. 1995 Base Tons	Post- Acquisition Tons	CHINGE
FROM STATIC	OLO	TO STATION	,	ROAD	MILES			
CLINTON	SC	GREENWOOD	SC	CSXT	28	28	30	71
GREENWOOD	SC	ATHENS	GA	CSXT	66	28	31	85
ATHENS	GA	ATLANTA	GA	CSXT	69	33	38	145
ATLAUTA	GA	LAGRANGE	GA	CSXT	70	23	25	105
LAGRANGE	GA	MONTGOMERY	AL	CSXT	100	17	19	71
HA' ILET	NC	MCBEE	SC	CSXT	108	5	6	78
MCBEE	SC	COLUMBIA	SC	CSXT	108	5	6	91
COLUMBIA	SC	FAIRFAX	SC	CSXT	76	4	4	31
FAIRFAX	SC	SAVANNAII	GA	CSXT	62	23	21	-81
HAMLET	NC	DILLON	SC	CSXT	42	18	19	45
DILLON	SC	ANDREWS	SC	CSXT	74	9	7	-135
ANDREWS	SC	STATE JCT	SC	CSXT	28	1	1	01
STATE JCT	SC	REMOUNT	SC	CSXT	20	2	3	48
REMOUNT	SC	CHARLESTON	SC	CSXT	10	4	4	01
СЛМАК	GA	ATLANTA	GA	CSXT	126	16	14	-105
AUGUSTA	GA	СЛМЛК	GA	CSXT	48	14	13	-51
ROBBINS	SC	AUGUSTA	GA	CSXT	28	26	23	-125
FAIREAX	SC	ROBBINS	SC	CSXT	29	26	23	-110
YEMASSEE	SC	FAIRFAX	SC	CSXT	31	7	6	-81
MCKENZIE	TN	MEMPHIS	TN	CSXT	116	19	21	81
NASHVILLE	TN	MCKENZIE	TN	CSXT	117	21	25	218
NASHVILLE	TN	STEVENSON	AL	CSXT	113	40	42	48
STEVENSON	AL	CHATTANOOGA	TN	CSXT	39	38	38	21
CHATTANOOGA	TN	CARTERSVILLE	GA	CSXT	87	36	36	-28
1.AGRANGE	AL	PARKWOOD	AL	CSXT	142	24	29	218
MANCHESTER	GA	LAGRANGE	GA	CSXT	45	21	23	118
WAYCROSS	GA	THOMASVILLE	GA	CSXT	105	11	12	48
THOMASVILLE	GA	METCALF	GA	CSXT	11	0	0	01
THOMASVILLE	GA	MONTGOMERY	AL	CSXT	210	11	11	01
JESUP	GA	FOLKSTON	GA	CSXT	54	26	26	01
JACKSONVILLE	FL	BALDWIN	FL	CSXT	18	19	20	91
BALDWIN	FL	CHATTAHOOCHEE	FL	CSXT	189	24	21	-135
CHATTAHOOCHEE	FL	PENSACOLA	FL	CSXT	161	18	16	-129
PENSACOLA	FL	FLOMATON	AL	CSXT	43	20	21	51
FLOMATON	AL	MOBILE	AL	CSXT	59	38	43	218
MOBILE	AL	NEW ORLEUNS	LA	CSXT	143	23	35	48%

Operating Plan Attachment 13.8

Page 6 of 14

SEGMENT					ADJ. 1995	POST- Acouisition	A CHANGE	
FROM STATIO	N	TO STATION		FAD	HILES	TONE	TONS	TN TONS/YR
WAYCROSS	GA	FOLKSTON	GA	TXL	35	65	66	25
FOLKSTON	GA	CALLAHAN	FL	CSXT	22	56	84	-125
CALLAHAN	FL	BALDWIN	FL	CSXT	21	44	51	155
BALDWIN	FL	STARKE	FL	CSXT	26	47	52	115
STARKE	FL	VITIS	FL	CSXT	126	39	40	35
VITIS	FL	PLANT CITY	FL	CSXT	19	25	26	21
PLANT CITY	FL	UCETA YARD	FL	CSXT	17	26	28	85
CALLAHAN	FL	JACKSONVILLE	FL	CSXT	16	47	46	-31
JACKSONVILLE	FL	PALATKA	FL	CSXT	54	22	21	-21
PALATKA	FL	SANFORD	FL	CSXT	68	16	16	-19
SANFORD	FL	ALOMA	FL	CSXT	27	0	0	01
SANFORD	FL	ORLANDO	FL	CSXT	22	14	13	-81
OKLANDO	FL	AUBURNDALE	FL	CSXT	51	8	8	136
AUBURNDALE	FL	LAKELAND	FL	CSXT	12	16	16	19
LAKELAND	FL	WINSTON	FL	CSXT	4	19	23	201
WINSTON	FL	PLANT CITY	FL	CSXT	5	18	20	105
AUBURNDALE	FL	SEBRING	FL	CSXT	47	13	14	21
SEBRING	FL	W. PALM BCH	FL	CSXT	103	11	11	21
W. PALM BCH	FL	MIAMI	FL	CSXT	70	12	12	19
E- LTIMORE	MD	HANOVER	PA	CSXT	55	5	6	71
HPNOVER	PA	HAGERSTOWN	MD	CSXT	57	2	2	01
TARPERS FERRY	WV	STRASBURG JCT	VA	CSXT	51	2	2	01
GREEN JCT	PA	BROWNFIELD	PA	CSXT	15	0	0	01
SINNS	PA	BROWNSVILLE	PA	CSXT	38	2	23	. 10556
RANKIN JCT	PA	WILLOW GROVE	PA	CSXT	11	3	3	01
GLENWOOD JCT	PA	TYLERDALE	PA	CSXT	32	2	2	01
WILLOW GROVE	PA	NEW CASTLE	PA	CSXT	56	1	1	01
WELLSBORO	IN	N. JUDSON	IN	CSXT	15	0	0	01
PINE JCT	IN	ROCK ISLAND JCT	IL	CSXT	10	1	1	01
BARR YD	IL	BLUE ISLAND JCT	IL	CSXT	3	7	39	4905
DOLTON	IL	75TH STREET	IL	CSXT	8	7	4	-351
BLUE ISLAND JCT	IL	59TH STREET	IL	CSXT	15	3	12	3511
BLUE ISLAND JCT	IL	CLEARING	IL	CSXT	15	35	37	51
JOLIET	IL	OTTAWA	IL	CSXT	45	5	. 5	19
OTTAWA	IL	HENRY	IL	CSXT	44	1	1	01
GRAND RAPIDS	MI	BALDWIN	MI	CSXT	75	2	2	01

Operating Plan Attachment 13.8

Page 7 of 14

SEGMENT					ADJ. 1995 BASE	Post- Acguisition		
FROM STATION		TO STATION		ROAD	MILES	TONS	TONS	IN TONS/YR
BALDWIN	MI	WALHALLA	MI	CSXT	13	2	2	05
WALHALLA	MI	LUDINGTON	MI	CSXT	14	1	1	05
WALHALLA	MI	MANISTEE	MI	CSXT	27	1	1	05
WAVERLY	MI	GRAND HAVEN	MI	CSXT	20	4	4	01
GRAND HAVEN	MI	MUSKEGON	MI	CSXT	13	2	2	01
MUSKEGON	MI	BERRY	MI	CSXT	5	0	0	01
BERRY	MI	MONTAGUE	MI	CSXT	11	0	0	01
BERRY	MI	FREMONT	MI	CSXT	20	0	0	05
SAGINAW	MI	MIDLAND	MI	CSXT	20	1	1	01
SAGINAW	MI	BAY CITY	MI	CSXT	17	2	2	05
SAGINAW	MI	YALE	MI	CSXT	19	1	1.	01
PORT HURON	MI	BELLE RIVER	MI	CSXT	15	5	5	05
FARGO	ON	BLENHEIM	ON	CSXT	4	0	0	01
СНАТНАМ	ON	FARGO	ON	CSXT	. 7	0	0.	01
CHATHAM	ON	SARNIA	ON	CSXT	53	0	0	01
BLENHEIM	ON	W. LORNE	ON	CSXT	28	0	0	01
CAMBRIDGE	OH	NEWARK	OH	CSXT	52	1	1	01
NEWARK	OH	COLUMBUS	OH	CSXT	35	2	2	01
MIDDLETOWN JCT	OH	MIDDLETOWN	OH	CSXT	11	13	9	-301
S. RICHMOND	VA	BELLWOOD	VA	CSXT	8	5	5	01
BELLWOOD	VA	HOPEWELL	VA	CSXT	16	4	4	05
BELLWOOD	VA	CENTRALIA	VA	CSXT	3	1	1	05
WELDON	NC	ROANOKE RAPIDS	NC	CSXT	5	1	1	01
WELDON	NC	FRANKLIN	VA	CSXT	41	8	7	-156
FRANKLIN	VA	PORTSMOUTH	VA	CSXT	37	7	7	-91
ROCKY MT	NC	PARMELE	NC	CSXT	32	2	2	01
PARMELE	NC	PLYMOUTH	NC	CSXT	37	2	2 .	01
FAUHELE	NC	ELMER	NC	CSXT	38	2	2	01
CONTENTNEA	NC	WALLACE	NC	CSXT	69	5	5	01
WARSAW	NC	MOLTONVILLE	NC	CSXT	10	1	1	01
FAYETTEVILLE	NC	FORT JCT	t'C	CSXT	9	0	0	01
FAYETTEVILLE	NC	VANDER	NC	CSXT	6	0	0	05
ST STEPHEN	SC	CROSS	SC	CSXT	10	4	4	04
WAYCROSS	GA	BRUNSWICK	GA	CSXT	63	3	3	01
WAYCROSS	GA	PEARSON	GA	CSXT	30	0	0	01
YULSE	FL	FERNANDINA BCH	FL	CSXT	12	4	4	01

	SEC	MENT				ADJ. 1995	POST-	
FROM STATIC	ON TO STATION		ROAD	MILES	TONS	ACQUISITION	CHANGE	
JACKSONVILLE	FL	SEALS	GA	CSXT	41			IN TONS/IN
VALRICO	FL	YEOMAN YARD	FL	CSXT	9	32	11	26
ORANGEBURG	SC	SUMTER	SC	CSXT	44	0	0	
BELTON	SC	GREENVILLE	SC	CSXT	28	ī	ĭ	
GREENVILLE	SC	SPARTANBURG	SC	CSXT	34	1	i	0.
ANDERSON	SC	BELTON	SC	CSXT	12	ō	ō	05
DURHAM	NC	JOYLAND	NC	CSXT	7	0	0	04
APEX	NC	DURHAM	NC	CSXT	22	1	1	01
NORLINA	NC	RALEIGH	NC	CSXT	55	1	1	01
PALEIGH	NC	HAMLET	NC	CSXT	97	5		-45
MCBEE	SC	ROBINSON	SC	CSXT	7	ō	o	05
MT HOLLY	NC	TERRELL	NC	CSXT	24	2	2	05
MONTGOMERY	AL	WESTERN JCT	AL	CSXT	51	2	2	01
CAMAK	GA	HABLLEE	GA	CSXT	56	5	5	01
ANDREWS	SC	PENNYROYAL JCT	SC	CSXT	8	6	6	0.
PENNYROYAL JCT	SC	GEORGETOWN	SC	CSXT	8	3	3	64
DAMES PT JCT	FL	N. SHORE JCT	FL	CSXT	5	4	1	01
BAINBRIDGE	GA	TALLAHASSEE	FL	CSXT	43	2	2	05
HILLSDALE	IN	CHRISMAN	IL	CSXT	16.3	4	4	85
CHRISMAN	IL	DECATUR	IL	CSXT	68.5	4 1	4	85
BRENTWOOD	TN	COLUMBIA	AL	CSXT	35	2	2	01
WELLINGTON	AL	BIRMINGHAM	AL	CS.IT	64	4	. 4	01
BAKERS SIDING	IN	CHINOOK	IN	CSXT	11	1	1	05
EVANSVILLE	IN	ADAMS	IN	CSXT	9	6	6	01
ADAMS	IN	CARMI	IL	CSXT	28	3	3	01
ADAMS	IN	ABEE	IN	CSXT	6	1	1	01
CARMI	IL	VENEDY	IL	CSXT	89	0	0.	05
KRONOS	KY	MOORMAN	KY	CSXT	5	2	2	05
KRONOS	KY	WILSON STA	KY	CSXT	4	2	2	0.
MOORMAN	KY	DRAKESBORO	KY	CSXT	13	3	3	
MORTON	KY	ATKINSON	KY	CSXT	5	13	13	
ATKINSON	KY	PROVIDENCE	KY	CSXT	19	9	9	
PROVIDENCE	KY	DOTIKI	KY	CSXT	5	3	1	
MILLPORT	KY	ATKINSON	KY	CSXT	19	5	5	01
COMO	KY	ZEIGLER 9 (NW)	KY	CSXT	4	2	2	01
DRAKESBORO	KY	SINCLAIR	KY	CSXT	6	2	2	01

Operating Plan Attachment 13.8

Page 9 of 14

FROM STATION TO STATION TO STATION ROAD MILES TONS TONS IN TORS/TR DENT KY JIM HILL KY CSXT 6 4 4 04 DENT KY JIM HILL KY CSXT 6 4 4 04 MAGELLA AL CHSTORA AL CSXT 13 5 5 04 MAGELLA AL BESSEMER AL CSXT 10 2 2 05 ATTALLA AL GUNTERSVILLE AL CSXT 30 1 1 04 ATTALLA AL WELLINGTON AL CSXT 3 3 05 BOYLES AL HUE CRK JCT AL CSXT 10 0 0 0 0 0 0 5 5 14 1 05 5 14 1 10 05 5 14 1 10 05 5 16<						ADJ. 1995	POST-	A CHANGE	
PROM PARTICIN TO BEATLON PARTA		SEG	MENT				BASE	ACQUISITION	CHANGE
DENT NY JM HILL NY CSAT 0 4 4 0 BLACK CRK AL CSKT 13 5 5 04 MAGELIA AL BESSEMER AL CSKT 10 2 2 04 ATTALIA AL WELINGTON AL CSKT 10 2 2 04 ATTALIA AL WELINGTON AL CSKT 15 6 6 04 BOYLES AL BLUE CRK JCT AL CSKT 10 0 0 05 SELMA AL WESTERN JCT AL CSKT 10 0 0 05 SELMA AL MESTERN JCT AL CSKT 12 1 1 05 DOSSETT TN HARRIMAN TN CSKT 12 1 1 05 DOSSETT TN BLUE RIDGE GA CSKT 10 1 05	FROM STATIO	N	TO STATION		ROAD	MILLES	TONS	TUNS	IN TONS/IK
BLACK CRK AL CHETOPA AL CSAT 13 5 5 6 MAGELLA AL BESSEMER AL CSAT 10 2 2 04 ATTALLA AL GUNTERSVILLE AL CSAT 30 1 1 04 ATTALLA AL GUNTERSVILLE AL CSAT 22 3 3 04 BYLES AL BLUE CRK JCT AL CSAT 6 10 10 04 BOYLES AL MULEY CRK AL CSAT 6 10 0 05 BOYLES AL WERENJ JCT AL CSAT 10 0 0 05 SELMA AL WATTLEWODD AL CSAT 61 1 1 04 CALHOUN TN PATTY TN CSAT 24 1 1 04 CALHOUN TN PATTY TN CSAT 20 1 1 04 CALHOUN TN PATTY TN CSAT	DENT	KY	JIM HILL	KI	CSAT				0.
MAGELLA AL BESSEMER AL CSAT 10 2 2 2 0 ATTALLA AL GUNTERSVILLE AL CSAT 30 1 1 0 ATTALLA AL WELLINGTON AL CSAT 22 3 3 0 BOYLES AL BLUE CRK JCT AL CSAT 15 6 6 0 BOYLES AL MT. PINSON AL CSAT 15 6 6 0 BOYLES AL MT. PINSON AL CSAT 10 0 0 0 SELMA AL WESTERN JCT AL CSAT 10 0 0 0 SELMA AL WESTERN JCT AL CSAT 3 2 2 0 MOUNTGOMERY AL AUTAUGA CRK AL CSAT 11 0 0 CALHOUN TN PATTY TN CSAT 9 1 1 0 COSSETT TN HARINAN TN CSAT 9 1 0 COSSETT TN HARINAN TN CSAT 24 1 1 0 MOUNTGOMERY AL AUTAUGA CRK AL CSAT 61 1 0 DOSSETT TN HARINAN TN CSAT 9 1 0 CALHOUN TN PATTY CSAT 9 1 0 CALHOUN TN BLUE RIDGE GA CSAT 61 1 0 MOUNTGOMERY AL AUTAUGA CRK AL CSAT 20 1 0 CALHOUN TN BLUE RIDGE GA CSAT 61 1 0 MOUNTGOMERY AL AUTAUGA CRK AL CSAT 24 1 0 DOSSETT TN HARINAN TN CSAT 7 2 2 0 LOUISVILLE KY WARSAN KY CSAT 20 1 1 0 MORTAUNI LE KY WARSAN KY CSAT 10 9 9 0 LOUISVILLE KY WARSAN KY CSAT 10 0 0 0 ROCKMART GA STILESBORO JCT GA CSAT 12 1 0 MCHON IN MONTCELLO IN CSAT 7 2 2 0 MCHON IN MONTCELLO IN CSAT 10 0 0 GRECKMART GA STILESBORO JCT GA CSAT 10 MCHON IN MONTCELLO IN CSAT 10 0 MCHON IN MONTCELLO IN CSAT 15 1 1 0 GREENCASTLE IN BLOMINGTON IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 15 1 0 GREENCASTLE IN BLOMINGTON IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 15 1 0 GREENCASTLE IN BLOMINGTON IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 15 1 0 GREENCASTLE IN BLOMINGTON IN CSAT 24 0 MCHON IN MONTCELLO IN CSAT 25 5 0 MD-WV ST-LN WV BAYARD WV CSAT 13 5 5 0 MD-WV ST-LN WV BAYARD WV CSAT 33 5 5 0 MD-WV ST-LN WV BAYARD WV CSAT 67 6 2 0 MCMAFON WV HENRY WV	BLACK CRK	AL	СНЕТОРА	AL	CSAT	13	2	2	0.
ATTALLAALGUNTERSVILLEALCSXT301110BOYLESALBLUE CRK JCTALCSXT223300BOYLESALBLUE CRK JCTALCSXT156600BULE CRK JCTALVALLEY CRKALCSXT100000SELMAALWESTERN JCTALCSXT100000SELMAALWESTERN JCTALCSXT11000SELMAALWESTERN JCTALCSXT1211000CALHOUNTNPATTYTNCSXT91100000CALHOUNTNPATTYTNCSXT241100 <td>MAGELLA</td> <td>AL</td> <td>BESSEMER</td> <td>AL</td> <td>CSXT</td> <td>10</td> <td>2</td> <td>-</td> <td>0.</td>	MAGELLA	AL	BESSEMER	AL	CSXT	10	2	-	0.
ATTALLAALMELLINGTONALCSXT22330BOYLESALBLUE CRK JCTALCSXT156604BLUE CRK JCTALVALLEY CRKALCSXT156604BOYLESALMT. PINSONALCSXT100004BOYLESALMT. PINSONALCSXT100004SELMAALWESTERN JCTALCSXT11104MOINTGOMERYALAUTAUGA CRKALCSXT611104DOSSETTTNHARIMANTNCSXT91104CALHOUNTNPATTYTNCSXT241104DOSSETTTNHIRRIMANTNCSXT241104CALHOUNTNBLUE RIGGEGACSXT201104MORTHVILLEKYWARSAWKYCSXT201104MORNHTNBLUE RIGGEGACSXT109904LOUISVILLEKYWARSAWKYCSXT101104RCKENZIETNDRESDENTNCSXT100004ROCKMARTGASTILESBOROJCTGACSXT100004ROCKMARTGASTILESBOROGACSXT11110 <t< td=""><td>ATTALIA</td><td>AL</td><td>GUNTERSVILLE</td><td>AL</td><td>CSXT</td><td>30</td><td>1</td><td></td><td>0.</td></t<>	ATTALIA	AL	GUNTERSVILLE	AL	CSXT	30	1		0.
BOYLES AL BLUE CRK JCT AL CSXT 15 6 6 0% BLUE CRK JCT AL VALLEY CRK AL CSXT 10 0 0% BUTLES AL MT. PINSON AL CSXT 10 0 0% SELMA AL WESTERN JCT AL CSXT 10 0 0% SELMA AL MYRTLEWOOD AL CSXT 11 1 0% MOHTGOMERY AL MYRTLEWOOD AL CSXT 12 1 1 0% CALHOUN TN PATTY TN CSXT 12 1 1 0% CALHOUN TN PATTY TN CSXT 16 1 1 0% CALHOUN TN PATTY TN CSXT 24 1 1 0% MORTHYILLE KY WARSAW KY CSXT 7 2 2 0%	ATTALLA	AL	WELLINGTON	AL	CSXT	22		3	0.
BLUE CHK JCTALVALLEY CRKALCSXT810100BOYLESALMT. PINSONALCSXT10000%BOYLESALMT. PINSONALCSXT10000%SELMAALMYRTLEWOODALCSXT3220%SELMAALMYRTLEWOODALCSXT61110%CALHOUNTNPATTYTNCSXT9110%DOSSETTTNHARRIMANTNCSXT24110%DOSSETTTNHARRSAWKYCSXT20110%DOSSETTTNHARRSAWKYCSXT20110%DOSSETTTNHARRSAWKYCSXT20110%LOUISVILLEKYMEDORAKYCSXT10990%LOUISVILLEKYMATSONINCSXT10000%PARK CITYKYGLASGOWKYC2XT10000%STILESBORO JCTGACSXT311110%MOHOHINMONTICELLOINCSXT10000%GREENCASTLEINBLOMINGTONINCSXT11110%MOHOHINMONTICELLOINCSXT6763-63%LOUISVILLE	BOYLES	AL	BLUE CRK JCT	AL	CSXT	15	6	6	01
BOYLESALMT. PINSONALCSXT10000%SELMAALWESTERN JCTALCSXT3220%SELMAALMYTLEWOODALCSXT61110%MOHTGOMERYALAUTAUGA CRKALCSXT12110%CALHOUNTNPATTYTNCSXT9110%DOSSETTTNHARRIMANTNCSXT24110%DOSSETTTNHARRIMANTNCSXT24110%MORTHVILLEKYWARSANKYCSXT20110%LOUISVILLEKYMARSANKYCSXT10990%LOUISVILLEKYMATSONINCSXT7220%MCKENZIETNDRESDENTNCSXT16110%PARK CITYKYGLASGOWKYCZXT10000%ROCKMARTGASTILESBORO JCTGACSXT11110%MOHONINMONTICELLOINCSXT10000%MOHONINMONTICELLOINCSXT11110%MOHONINMONTICELLOINCSXT163-63%0%LONG BRANCHKYDOE RUNKYCSXT11110% <t< td=""><td>BLUE CRK JCT</td><td>AL</td><td>VALLEY CRK</td><td>AI.</td><td>CSXT</td><td>8</td><td>10</td><td>10</td><td>01</td></t<>	BLUE CRK JCT	AL	VALLEY CRK	AI.	CSXT	8	10	10	01
SELMAALWESTERN JCTALCTXT3220%SELMAALMYRTLEWOODALCSXT61110%MOHTGOMERYALAUTAUGA CRKALCSXT61110%CALHOUNTNPATTYTNCSXT9110%DOSSETTTNHARRIMANTNCSXT24110%DOSSETTTNHARRIMANTNCSXT24110%MORTHVILLEKYMARSAWKYCSXT20110%MORTHVILLEKYMARSAWKYCSXT20110%LOUISVILLEKYMARSAWKYCSXT7220%LOUISVILLEKYWATSONINCSXT7220%MCKENZIETNDRESDENTNCSXT16110%ROCKMARTGASTILESBORO JCTGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT10000%MOHOHINMONTICELLOINCSXT11110%GREEHCASTLEINBLOMINGTONINCSXT24000%INONOHINMODALYCSXT10000%0%MOHOHINMEDARYUILLEINCSXT11110%	BOYLES	AL	MT. PINSON	AL	CSXT	10	0	0	05
SELMAALMYRTLEWOODALCSXT611104MONTGOMERYALAUTAUGA CRKALCSXT121104CALHOUNTNPATTYTNCSXT91104DOSSETTTNHARRIMANTNCSXT241104ETOWAHTNBLUE RIDGEGACSXT241104LOUISVILLEKYWAŘSAWKYCSXT201104LOUISVILLEKYWAŘSONINCSXT72204LOUISVILLEKYWATSONINCSXT72204MCKENZIETNDRESDENTNCSXT161104PARK CITYKYGLASGOWKYC2KT100004STILESBORO JCTGASTILESBOROGACSXT3111104MOHONINMONTICELLOINCSXT100004MOHONINMEDARVULLEINCSXT100004MOHONINMEDARVULLEKYCSXT111104MOHONINMEDARVULLEKYCSXT100004MOHONINMEDARVULLEKYCSXT1110404MOHONINMEDARVULLEKYCSXT1110404 <td< td=""><td>SELMA</td><td>AL</td><td>WESTERN JCT</td><td>AL</td><td>CSXT</td><td>3</td><td>2</td><td>2</td><td>01</td></td<>	SELMA	AL	WESTERN JCT	AL	CSXT	3	2	2	01
MONTGOMERYALAUTAUGA CRKALCSXT121104CALIDUNTNPATTYTNCSXT91104DOSSETTTNHARRIMANTNCSXT241104DOSSETTTNHARRIMANTNCSXT241104ETOWNHTNBLUE RIDCEGACSXT241104WORTHVILLEKYWARSAWKYCSXT201104LOUISVILLEKYMEDORAKYCSXT109904LOUISVILLEKYMATSONINCSXT72204MCKENZIETNDRESDENTNCSXT161104PARK CITYKYGLASGOWKYCZXT100004NOKONINMONTICELLOINCSXT213304STILESBORO JCTGACSXT100004MOHONINMONTICELLOINCSXT151104GREENCASTLEINBLOMINGTONINCSXT240004MOHONINMONTICELLOINCSXT151104GREENCASTLEINBLOMINGTONINCSXT240004MITCHELLINLOUISVILLEKYCSXT151104INONON<	SELMA	AL	MYRTLEWOOD	AL	CSXT	61	1	1	01
CALHOUN TN PATTY TN CSXT 9 1 1 0% DOSSETT TN HARRIMAN TN CSXT 24 1 1 0% ETOWAH TN BLUE RIDGE GA CSXT 24 1 1 0% WORTHVILLE KY MARSAW KY CSXT 20 1 1 0% LOUISVILLE KY MEDORA KY CSXT 10 9 9 0% LOUISVILLE KY MATSON IN CSXT 7 2 2 0% MCKENZIE TN DRESDEN TN CSXT 16 1 1 0% PARK CITY KY GLASGOW KY CSXT 10 0 0 0% STILESBORO JCT GA STILESBORO JCT GA CSXT 10 0 0 0% MONON IN MONTICELLO IN CSXT 15	MONTGOMERY	AL	AUTAUGA CRK	AL	CSXT	12	1	1	01
DOSSETTTNHARRIMANTNCSXT241104ETOWAHTNBLUE RIDGEGACSXT611104WORTHVILLEKYWAŘSAWKYCSXT201104LOUISVILLEKYMEDORAKYCSXT109906LOUISVILLEKYWATSONINCSXT72206MCKENZIETNDRESDENTNCSXT161104PARK CITYKYGLASGOWKYCZXT100006ROCKMARTGASTILESBORO JCTGACSXT223306STILESBORO JCTGASTILESBORO GACSXT3111106MONONINMONTICELLOINCSXT100006MONONINMEDARYVILLEINCSXT151106MONONINBLOOMINGTONINCSXT240006MITCHELLINBLOUISVILLEKYCSXT11106ILONG BRANCHKYDOE RUNKYCSXT11106ILONG BRANCHKYDOE RUNKYCSXT11106ILONG BRANCHKYDOE RUNKYCSXT111106ILONG BRANCHKYDOE RUNKYCSXT135506MD	CALHOUN	TN	PATTY	TN	CSXT	9	1	1	01
ETOWAH TN BLUE RIDGE GA CSXT 61 1 1 04 WORTHVILLE KY WARSAW KY CSXT 20 1 1 04 LOUISVILLE KY MEDORA KY CSXT 20 1 1 04 LOUISVILLE KY MATSON IN CSXT 10 9 9 06 LOUISVILLE KY WATSON IN CSXT 10 9 9 06 MCKENZIE TN DRESDEN TN CSXT 16 1 1 06 PARK CITY KY GLASGOW KY C2XT 10 0 0 06 ROCKMART GA STILESBORO JCT GA CSXT 10 0 0 06 MONON IN MONTICELLO IN CSXT 10 0 0 06 MOHON IN BLOATYULLE IN CSXT 167 8 3 -638 LONG BRANCH KY DOE RUN KY	DOSSETT	TN	HARRIMAN	TN	CSXT	24	1	1	01
WORTHVILLE KY WAŘSAW KY CSXT 20 1 1 0% LOUISVILLE KY MEDORA KY CSXT 10 9 9 0% LOUISVILLE KY WATSON IN CSXT 7 2 2 0% MCKENZIE TN DRESDEN TN CSXT 16 1 1 0% PARK CITY KY GLASGOW KY CSXT 10 0 0 0% ROCKMART GA STILESBORO JCT GA CSXT 22 3 3 0% STILESBORO JCT GA STILESBORO GA CSXT 10 0 0 0% MOHON IN MONTICELLO IN CSXT 15 1 1 0% GREENCASTLE IN BLOOMINGTON IN CSXT 15 1 1 0% ILONG BRANCH KY DOE RUN KY CSXT 11	ETOWAH	TN	BLUE RIDGE	GA	CSXT	61	1	1	01
LOUISVILLEKYMEDORAKYCSXT109904LOUISVILLEKYWATSONINCSXT72204MCKENZIETNDRESDENTNCSXT161104PARK CITYKYGLASGOWKYCZXT100006ROCKMARTGASTILESBORO JCTGACSXT223306STILESBORO JCTGASTILESBOROGACSXT223306STILESBORO JCTGASTILESBOROGACSXT100006MOHONINMONTICELLOINCSXT100006MCHONINMEDARYVILLEINCSXT151106GREENCASTLEINBLOOMINGTONINCSXT240006MITCHELLINLOUISVILLEKYCSXT111106ILONG BRANCHKYDOE RUNKYCSXT111106INMPSHIREWVMD-WV ST-LNWVCSXT295506MD-WV ST-LNWVCSXT62206MK JCTWVKINGWOODWVCSXT182206GRAFTONWVKINGWOODWVCSXT182206	WORTHVILLE	KY	WARSAW	KY	CSXT	20	1	1	01
LOUISVILLEKYWATSONINCSXT7220%MCKENZIETNDRESDENTNCSXT16110%PARK CITYKYGLASGOWKYC2XT10000%ROCKMARTGASTILESBORO JCTGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT311110%MONONINMONTICELLOINCSXT10000%MONONINMONTICELLOINCSXT15110%MCHONINBLOOMINGTONINCSXT24000%GREENCASTLEINBLOUISVILLEKYCSXT6763-63%LONG BRANCHKYDOE RUNKYCSXT11110%HAMPSHIREWVMD-WVST-LNWVCSXT29550%MD-WV ST-LNWVCSXT6220%0%BAYARDWVHENRYWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWD TOWERWVCSXT275659%	LOUISVILLE	KY	MEDORA	KY	CSXT	10	9	9	01
MCKENZIETNDRESDENTNCSXT16110%PARK CITYKYGLASGOWKYC2XT10000%ROCKMARTGASTILESBORO JCTGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT311110%MONONINMONTICELLOINCSXT10000%MONONINMEDARYVILLEINCSXT15110%MCHONINBLOOMINGTONINCSXT240%00%MITCHELLINLOUISVILLEKYCSXT6763-63%LONG BRANCHKYDOE RUNKYCSXT1110%MD-WV ST-LNWVCSXT11110%MD-WV ST-LNWVCSXT29550%BAYARDWVBAYARDWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWD TOWERWVCSXT275859%	LOUISVILLE	KY	WATSON	IN	CSXT	7	2	2	01
PARK CITYKYGLASGOWKYC2XT100004ROCKMARTGASTILESBORO JCTGACSXT223304STILESBORO JCTGASTILESBOROGACSXT223304MONONINMONTICELLOINCSXT3111104MONONINMONTICELLOINCSXT100004MONONINMONTICELLOINCSXT151104MONONINMEDARYVILLEINCSXT151104GREENCASTLEINBLOOMINGTONINCSXT247004MITCHELLINLOUISVILLEKYCSXT6763-634LONGBRANCHKYDOE RUNKYCSXT11104TWENTY FIRST STWVHAMPSHIREWVCSXT111104HAMPSHIREWVMD-WV ST-LNWVCSXT295504MD-WV ST-LNWVCSXT335504BAYARDWVCSXT62204MK JCTWVKINGWOODWVCSXT182204GRAFTONWVWD TOWERWVCSXT2758594	MCKENZIE	TN	DRESDEN	TN	CSXT	16	1	1	01
ROCKMARTGASTILESBORO JCTGACSXT22330%STILESBORO JCTGASTILESBOROGACSXT311110%MONONINMONTICELLOINCSXT10000%MONONINMONTICELLOINCSXT10000%MONONINMONTICELLOINCSXT15110%MONONINMEDARYVILLEINCSXT15110%GREENCASTLEINBLOOMINGTONINCSXT240/00%MITCHELLINLOUISVILLEKYCSXT6763-63%LONGBRANCHKYDOE RUNKYCSXT1110%TWENTY FIRST STWVHAMPSHIREWVCSXT11110%HAMPSHIREWVCSXT11110%MD-WV ST-LNWVCSXT29550%MD-WV ST-LNWVCSXT33550%BAYARDWVHENRYWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWD TOWERWVCSXT275859%	PARK CITY	KY	GLASGOW	KY	CEXT	10	0	0	01
STILESBORO JCTGASTILESBOROGACSXT3111101MONONINMONTICELLOINCSXT100001MOHONINMEDARYVILLEINCSXT151101GREEHCASTLEINBLOOMINGTONINCSXT247001MITCHELLINLOUISVILLEKYCSXT6783-631LONG BRANCHKYDOE RUNKYCSXT11104TWENTY FIRST STWVHAMPSHIREWVCSXT111104HAMPSHIREWVMD-WV ST-LNWVCSXT295504MD-WV ST-LNWVCSXT335504BAYARDWVHENRYWVCSXT62204MK JCTWVKINGWOODWVCSXT182204GRAFTONWVWD TOWERWVCSXT2758594	ROCKMART	GA	STILESBORO JCT	GA	CSXT	22	3	3	01
MONONINMONTICELLOINCSXT100001MOHONINMEDARYVILLEINCSXT151101GREENCASTLEINBLOOMINGTONINCSXT240001MITCHELLINLOUISVILLEKYCSXT6783-631LONG BRANCHKYDOE RUNKYCSXT11101TWENTY FIRST STWVHAMPSHIREWVCSXT111101HAMPSHIREWVMD-WV ST-LNWVCSXT295501MD-WV ST-LNWVCSXT335501BAYARDWVCSXT62201MK JCTWVKINGWOODWVCSXT182201GRAFTONWVWD TOWERWVCSXT2758591	STILESBORO JCT	GA	STILESBORO	GA	CSXT	3	11	11	.01
MOHONINMEDARYVILLEINCSXT151101GREENCASTLEINBLOOMINGTONINCSXT240001MITCHELLINLOUISVILLEKYCSXT6783-631LONG BRANCHKYDOE RUNKYCSXT11101TWENTY FIRST STWVHAMPSHIREWVCSXT111101HAMPSHIREWVMD-WVST-LNWVCSXT295501MD-WV ST-LNWVCSXT29550101BAYARDWVCSXT335501MK JCTWVHENRYWVCSXT62201GRAFTONWVWUCSXT182201	MONON	IN	MONTICELLO	IN	CSXT	10	0	0	01
GREENCASTLEINBLOOMINGTONINCSXT240001MITCHELLINLOUISVILLEKYCSXT6783-631LONG BRANCHKYDOE RUNKYCSXT11101TWENTY FIRST STWVHAMPSHIREWVCSXT111101HAMPSHIREWVMD-WV ST-LNWVCSXT295501MD-WV ST-LNWVCSXT335501BAYARDWVCSXT62201MK JCTWVKINGWOODWVCSXT182201GRAFTONWVWVCSXT2758591	MOLION	IN	MEDARYVILLE	IN	CSXT	15	1	1	01
MITCHELLINLOUISVILLEKYCSXT6783-63%LONG BRANCHKYDOE RUNKYCSXT1110%TWENTY FIRST STWVHAMPSHIREWVCSXT11110%HAMPSHIREWVMD-WVST-LNWVCSXT29550%MD-WVST-LNWVCSXT29550%BAYARDWVCSXT33550%BAYARDWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWDTOWERWVCSXT275859%	GREENCASTLE	IN	BLOOMINGTON	IN	CSXT	24	0	0	01
LONG BRANCHKYDOE RUNKYCSXT1110%TWENTY FIRST STWVHAMPSHIREWVCSXT11110%HAMPSHIREWVMD-WVST-LNWVCSXT29550%MD-WVST-LNWVCSXT29550%MD-WVST-LNWVCSXT33550%BAYARDWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWDTOWERWVCSXT275859%	MITCHELL	IN	LOUISVILLE	KY	CSXT	67	8	3	-631
TWENTY FIRST STWVHAMPSHIREWVCSXT11110%HAMPSHIREWVMD-WV ST-LNWVCSXT29550%MD-WV ST-LNWVCSXT29550%MD-WV ST-LNWVCSXT33550%BAYARDWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWDTOWERWVCSXT275859%	LONG BRANCH	KY	DOE RUN	KY	CSXT	1	1	1	01
HAMPSHIREWVMD-WV ST-LNWVCSXT29550%MD-WV ST-LNWVBAYARDWVCSXT33550%BAYARDWVHENRYWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWVCSXT275859%	TWENTY FIRST ST	WV	HAMPSHIRE	WV	CSXT	11	1	1	01
MD-WV ST-LNWVBAYARDWVCSXT33550%BAYARDWVHENRYWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWVCSXT275859%	HAMPSHIRE	WV	MD-WV ST-LN	WV	CSXT	29	5	5	01
BAYARDWVHENRYWVCSXT6220%MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWVCSXT275859%	MD-WV ST-LN	WV	BAYARD	WV	CSXT	33	5	5	01
MK JCTWVKINGWOODWVCSXT18220%GRAFTONWVWVCSXT275859%	UNYNOD	WV	HENRY	WV	CSXT	6	2	2	01
GRAFTON WV WD TOWER WV CSXT 27 5 8 591	BATARD ME ICT	WV	KINGWOOD	WV	CSXT	18	2	2	05
GRAFTON WV WD IOWER WV CBAL 27 5 6 500	MK JCI	ww	NT TOWER	wv	CENT	27	ĩ	Ā	596
WE MOURD WY DIVECUTITE WY CEYT A A TORY	GRAFTON COMPO		DIVEGUTTE	WV	CENT		/	ž	1085
	WD TOWER	04	DELIEF	04	CSYT	27	;	2	0
NUMBER OF REDEET OF CONT 27 2 2 00	W. MARIETTA	OH	W MARIETTA	OH	CSXT	12	2	2	01
	BELFRE	01	DADKEDCBUDC	04	CSYT		;	-	0.

Operating Plan Attachment 13.8

Page 10 of 14
	-					ADJ. 1995	POST-	
	SEG	MENT				BASE	ACQUISITION	• CHANGE
FROM STATION		TO BTATION		ROAD	MILES	TONS	TONS	IN TONS/YR
BERKELEY JCT	WV	BERRYBURG JCT	WV	CSXT	11	14	14	05
BERRYBURG JCT	WV	TYGART JCT	WV	CSXT	11	11	11	01
TYGART JCT	WV	CENTURY JCT	WV	CSXT	4	11	11	05
CENTURY JCT	WV	BUCKHANNON	WV	CSXT	13	10	10	01
BUCKHANNON	WV	HAMPTON JCT	WV	CSXT	6	9	9	05
HAMPTON JCT	WV	BURNSVILLE JCT	WV	CSXT	31	9	9	01
BURNSVILLE JCT	WV	WN TOWER	WV	CSXT	42	7	7	05
WN TOWER	WV	ALLINGDALE	WV	CSXT	11	0	0	01
TYGAR' JCT	WV	NORTON	WV	CSXT	22	0	0	05
NORTON	WV	ELKINS	WV	CSXT	8	0	0	05
BURNSVILLE JCT	WV	GILMER	WV	CSXT	5	0	0	05
HAMPTON JCT	WV	IC JCT	WV	CSXT	6	1	1	01
IC JCT	WV	ALEXANDER	WV	CSXT	10	1	1	01
BERRYBURG JCT	WV	SENTINAL	WV	CSXT	13	3	3	01
CENTURY JCT	WV	CENTURY	WV	CSXT	5	0	0	01
WN TOWER	WV	DONALDSON W	WV	CSXT	3	0	0	01
DONALDSON W	WV	BECKLEY NO 1	WV	CSXT	19	0	0	01
ST ALBANS	WV	SPROUL	WV	CSXT	15	53	53	01
SPROUL	WV	MADISON	WV	CSXT	22	33	33	05
MADISON	WV	CLOTHIER	WV	CSXT	12	10	10	01
CI.OTHIER	WV	SHARPLES	WV	CSXT	3	9	9	01
SHARPLES	WV	MONCLO	WV	CSXT	1	9	9	01
BARBOURSVILLE	WV	LOGAN	WV	CSXT	65	21	21	01
LOGAN	WV	STOLLINGS	WV	CSXT	2	13	13	01
STOLLINGS	WV	RUM JCT	WV	CSXT	3	13	13	05
RUM JCT	WV	GILBERT YARD	WV	CSXT	21	8	8	01
MEADOW CRK	WV	RAINELLE JCT	WV	CSXT	20	3	3	01
RAINELLE JCT	WV	SWISS JCT	WV	CSXT	47	2	2	05
RAINELLE JCT	WV	CLEARCO	WV	CSXT	24	ō	ō	05
CREENBRIR E J	WV	PEASER JCT	WV	CSXT	13	0	ő	05
PEASER JCT	WV	LEE	WV	CSXT	1	õ	ő	
PRINCE	WV	GLEN DANIELS JC	WV	CSXT	27	5		
RALEIGH	WV	STONE COAL JCT	WV	CSXT	20	ĩ	1	
BECKLEY JCT	WV	CRANBERRY	WV	CSXT	6	ō	ò	0.
GLEN DANIELS IC	WV	MAPLE MEADOW	WV	CSXT		2	2	0.
GAULEY BR	WV	RICH CRK JCT	WV	CSXT	ż	ō	0	0.

FROM STATION TO STATION ROAD NIL28 TONS IN TONS/TR IN TONS/TR HADISON WV HARRIS WV CSXT 30 17 17 05 VANCT WV ROBIN HOOD WV CSXT 8 2 2 05 SPROUL WV BLAREOK WV CSXT 8 2 2 05 SPROUL WV BLAROK WV CSXT 3 19 19 05 SPROUL WV ELK RUN JCT WV CSXT 3 5 5 06 SETH WV PRETTUS WV CSXT 1 5 5 06 PETTUS WV PETTUS WV CSXT 2 3 3 06 MAN WV SUNDIAL WV CSXT 2 3 J 06 SINP C.4K JCT WV BARPEDLO MINE WV CSXT 3 0 <t< th=""></t<>
PROM BTATION TO BTATION ROAD SC RELEAS TOWE TOWE IN TOWE/IN WADLSON WV RABLIS WV CSXT 30 17 17 0% VAN.JCT WV ROBIN HOOD WV CSXT 8 2 2 0% ROBINSON CRF JC WV HOLBROOK WV CSXT 2 2 2 0% SPROUL WV ELK RUN JCT WV CSXT 34 19 19 0% SETH WV PERTUS WV CSXT 10 3 3 0% JARROLDS VALL WV PETTUS WV PETTUS WV PETTUS WV PETTUS WV PETTUS WV SUNDIAL WV CSXT 2 3 J 0% MAN WV BUFFALO MINE WV CSXT 16 6 0 0% SINAP CAK JCT WV BAND MILL WV CSXT 1 0<
MADISON WV HARRIS WV CSXT J0 J7 17 17 0 ROBINSON CRF JC WV ROBIN HOOD WV CSXT 8 2 2 0 ROBINSON CRF JC WV HOLBROOK WV CSXT 2 2 2 0 SPROUL WV ELK RUN JCT WV CSXT 3 15 0 SETH WV JARROLDS VALL WV CSXT 1 3 3 0 SETH WV PREMTER NO 5 WV CSXT 1 5 5 0 PETTUS WV PREMTRE NO 5 WV CSXT 2 3 J 0 PETTUS WV MARORK W/ CSXT 8 2 2 0 0 NAN WV ELK RUN J WV CSXT 16 6 6 0 0 SIDLINGS WV BAND MILL VV CSXT 1 0 0 0 0 SIDLINGS WV
VANCT WV ROBIN HOOD WV CSXT B 2 2 0 SPROUL WV ELK RUN JCT WV CSXT 3 19 19 06 SPROUL WV ELK RUN JCT WV CSXT 3 19 19 06 SPROUL WV PELK RUN JCT WV CSXT 3 5 5 06 SETH WV PREMTER NO 5 WV CSXT 1 5 5 06 JARROLDS VALL WV PETTUS WV CSXT 1 5 5 06 PETTUS WV PETTUS WV CSXT 2 3 3 06 W1LO WV ELK CRK NO 1 WV CSXT 2 3 3 06 SNAP CAK JCT WV DON WV CSXT 6 2 2 06 STOLLINGS WV BAND MILL JCT WV CSXT 1 0 0 06 BAND MILL JCT WV CSXT 1 <t< td=""></t<>
ROBLINSON CRF JC WV HOLBROOK WV CSXT 2 2 2 06 SPROUL WV ELK RUN JCT WV CSXT 34 19 19 06 ELK RUN JCT WV JARROLDS VALL WV CSXT 3 5 06 SETH WV PRENTER NO 5 WV CSXT 10 3 3 06 JARROLDS VALL WV PETTUS WV CSXT 1 5 5 06 PETTUS WV SUNDIAL WV CSXT 2 3 3 06 PETTUS WV SUNDIAL WV CSXT 2 3 3 06 WYLO WV SUNDIAL WV CSXT 16 6 6 06 SNAP CAK JCT WV SUNDIAL WV CSXT 16 6 6 06 SNAP CAK JCT WV DON WV CSXT 1 0 0 06 SNAP CAK JCT WV DAM MILL JCT WV CSX
SPROUL WV ELK RUN JCT WV CSXT 34 19 19 19 04 ELK RUN JCT WV JARROLDS VALL WV CSXT 3 5 5 04 SETH WV PRENTER NO 5 WV CSXT 10 3 3 04 JARROLDS VALL WV PETTUS WV CSXT 1 5 5 04 PETTUS WV PETTUS WV CSXT 1 5 5 04 PETTUS WV SUNDIAL WV CSXT 1 5 5 04 PETTUS WV SUNDIAL WV CSXT 2 3 3 04 MAN WV BUFFALO MINE WV CSXT 16 6 6 04 SNAP CAK JCT WV BUFFALO MINE WV CSXT 1 0 0 04 BAND MILL JCT WV BAND MILL JCT WV CSXT 1 0 0 04 LOGAN WV TRACE JCT
ELK RUN JCT WV JARROLDS VALL WV CSXT 3 5 5 04 SETH WV PRENTER NO 5 WV CSXT 10 3 3 04 JARROLDS VALL WV PETTUS WV CSXT 1 5 5 04 PETTUS WV MARFORK W/ CSXT 1 5 5 04 PETTUS WV SUNDIAL WV CSXT 2 3 3 04 MARO WV SUNDIAL WV CSXT 16 6 6 05 MAN WV BUFFALO MINE WV CSXT 16 6 6 06 SNAP CAK JCT WV DON WV CSXT 1 0 0 06 SNAP CAK JCT WV MARGEGOR WV CSXT 1 0 0 06 SNDLINGS WV MARCHEGOR WV CSXT 1 0 0 06 LOGAN WV TRACE JCT WV CSXT
SETH WV PRENTER NO 5 NV CSXT 10 3 3 04 JARROLDS VALL WV PETTUS WV CSXT 1 5 5 06 PETTUS WV MRAFORK W/ CSXT 2 3 3 C4 PETTUS WV SUNDIAL WV CSXT 8 2 2 06 WYLO WV BLK CRK NO 1 WV CSXT 16 6 6 06 SNAP CAK JCT WV BUFFALO MINE WV CSXT 3 0 0 06 RUM JCT WV BUFFALO MINE WV CSXT 1 0 0 06 SIADE CAK JCT WV BAND MILL JCT WV CSXT 1 0 0 06 STOLLINGS WV BAND MILL JCT WV CSXT 1 0 0 06 LOGAN WV TRACE JCT WV CSXT
JARROLDS VALL WV PETTUS WV CSXT 1 5 5 04 PETTUS WV MARFORK W/ CSXT 2 3 3 C4 PETTUS WV SUNDIAL WV CSXT 2 3 3 C4 WYLO WV BUNDIAL WV CSXT 2 3 3 04 MAN WV BUFFALO MINE WV CSXT 2 3 3 04 MAN WV BUFFALO MINE WV CSXT 16 6 6 06 SNAP CAK JCT WV BUFFALO MINE WV CSXT 3 0 0 06 SNAP CAK JCT WV BAND MILL JCT WV CSXT 1 0 0 06 06 STOLLINGS WV BAND MILL JCT WV CSXT 1 0 0 06 06 LOGAN WV MRACB JCT WV CSXT 6 4 4 06 LOGAN WV HOBET NO
PETTUS WV MARFORK W/ CSXT 2 3 3 C4 PETTUS WV SUNDIAL WV CSXT 2 2 06 WYLO WV SUK CRK NO 1 WV CSXT 2 3 J 06 MAN WV BUFFALO MINE WV CSXT 16 6 6 06 SNAP CxK JCT WV DON WV CSXT 3 0 0 06 SNAP CxK JCT WV DON WV CSXT 3 0 0 06 SNAP CxK JCT WV DON WV CSXT 1 0 0 06 SNAP CxK JCT WV MACGREGOR WV CSXT 1 0 0 06 BAND MILL JCT WV MARCGREGOR WV CSXT 1 0 0 06 LOGAN WV TRACE JCT WV CSXT 8 4 4 06 LogAN WV HOBET NO 7 WV CSXT 1
FETTUS NV SUNDIAL NV CSXT Ø 2 2 04 WYLO WV ELK CRK NO 1 WV CSXT 2 3 J 05 MAN WV BUFFALO MINE WV CSXT 16 6 6 05 SNAP Cakk JCT WV BUFFALO MINE WV CSXT 16 6 06 05 RUM JCT WV BUFFALO MINE WV CSXT 6 2 2 05 STOLLINGS WV BAND MILL JCT WV CSXT 1 0 0 06 BAND MILL JCT WV MARA WV CSXT 1 0 0 06 LOGAN WV TRACE JCT WV CSXT 3 6 6 06 06 LOGAN WV TRACE JCT WV CSXT 1 2 2 06 LOGAN WV HOBET NO 7 WV CSXT 1 2 2 06 LOGAN WV ISLAND CRK NO 2
WYLOWVELK CRK NO 1WVCSXT23J0%MANWVBUFFALO MINEWVCSXT16660%SNAP CAK JCTWVDONWVCSXT3000%SNAP CAK JCTWVDONWVCSXT3000%SNAP CAK JCTWVDONWVCSXT6220%STOLLINGSWVBAND MILL JCTWVCSXT1000%BAND MILL JCTWVMACREGORWVCSXT1000%LOGANWVMRACE JCTWVCSXT3660%MONITOR JCTWVMARRWVCSXT8440%LogANWVHOBET NO 7WVCSXT6440%LogANWVHOBET NO 7WVCSXT1220%MONITOR JCTWVMARRWVCSXT1220%LogANWVHOBET NO 7WVCSXT1220%LogANWVHOBET NO 7WVCSXT1220%LogANWVHOBET NO 7WVCSXT110%JLDAD CRK NO 2WVCSXT1110%GLADE CRK JCTWVSKYLINEKYCSXT35111SHLEBY JCTKYBURKE
MANWVBUFFALO MINEWVCSXT166604SNAP CAK JCTWVDONWVCSXT30004RUM JCTWVMACGREGORWVCSXT62204STOLLINGSWVBAND MILL JCTWVCSXT10004BAND MILL JCTWVCSXT10004LOGANWVTRACE JCTWVCSXT10004LOGANWVTRACE JCTWVCSXT36604LOGANWVHOBET NO 7WVCSXT84404LOGANWVHOBET NO 7WVCSXT64404LOGANWVHOBET NO 7WVCSXT12204LOGANWVHOBET NO 7WVCSXT12204LOGANWVHOBET NO 7WVCSXT12204LOGANWVHOBET NO 7WVCSXT12204LOGANWVHOBET NO 7WVCSXT81104LEVISA JCTKYSLONES BRANCHKYCSXT81104GLADE CRK JCTWVCARENWVCSXT32204JAWKINSKYSKYLINEKYCSXT351104SHELBY JCTKY <t< td=""></t<>
SNAP CKK JCTWVDONWVCSXT30001RUM JCTWVMACGREGORWVCSXT62201STOLLINGSWVBAND MILL JCTWVCSXT10001BAND MILL JCTWVMELVILLEWVCSXT10001LOGANWVTRACE JCTWVCSXT36601MONITOR JCTWVOMARWVCSXT84401LOGANWVHOBET NO 7WVCSXT64401LOGANWVHOBET NO 7WVCSXT12201LOGANWVHOBET NO 7WVCSXT110101LOGANWVHOBET NO 7WVCSXT12201LOGANWVHOBET NO 7WVCSXT110101LOGANWVHOBET NO 7WVCSXT110101LOGANWVHOBET NO 7WVCSXT110101LOGANWVISLAND CRK NO 2WVCSXT110101GLADE CRK JCTWVCARENWVCSXT32201JALEDE CRK JCTWVCSXT35110101SHELBY JCTKYSTCHARLESVACSXT31141401
RUM JCTWVMACGREGORWVCSXT6220STOLLINGSWVBAND MILL JCTWVCSXT1000BAND MILL JCTWVMELVILLEWVCSXT1000LOGANWVTRACE JCTWVCSXT3660MONITOR JCTWVOMARWVCSXT8440LOGANWVHOBET NO 7WVCSXT6440LOGANWVHOBET NO 7WVCSXT6440LOGANWVHOBET NO 7WVCSXT1220RUN JCTKYSLONES BRANCHKYCSXT1100GLADE CRK JCTWVISLAND CRK NO 2WVCSXT3220GLADE CRK JCTWVCARENWVCSXT3110GLADE CRK JCTWVCARENWVCSXT3220DAWKINSKYSKYLINEKYCSXT351100SHELBY JCTKYSKTINOKYCSXT31141400SHELBY JCTKYBURKE STATIONKYCSXT31141400ST CHARLESVASKT1000000ST CHARLESVASKT111
STOLLINGSWVBAND MILL JCTWVCSXT1000BAND MILL JCTWVMELVILLEWVCSXT1000LOGANWVTRACE JCTWVCSXT3660MONITOR JCTWVOMARWVCSXT8440LOGANWVHOBET NO 7WVCSXT6440LOGANWVHOBET NO 7WVCSXT6440LEVISA JCTKYSLONES BRANCHKYCSXT1220RUN JCTWVISLAND CRK NO 2WVCSXT8110GLADE CRK JCTWVCARENWVCSXT3220DAWKINSKYSKYLINEKYCSXT35110SHELBY JCTKYBURKE STATIONKYCSXT3114140PENNINGTONVAST CHARLESVACSXT1100ST CHARLESVACSXT110000PASKERTVAST CHARLESVACSXT1100SAVOYKYGATLIFFKYCSXT162200NOVES CRATIONKYGSXT2200000
BAND MILL JCTWVMELVILLEWVCSXT1000LOGANWVTRACE JCTWVCSXT3660%MONITOR JCTWVOMARWVCSXT8440%LOGANWVHOBET NO 7WVCSXT6440%LOGANWVHOBET NO 7WVCSXT6440%LEVISA JCTKYSLONES BRANCHKYCSXT1220%RUN JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYSTATIONKYCSXT3114140%PENNINGTONVAST CHPRLESVACSXT110%ST CHARLESVACSXT1110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT16220%
LOGANWVTRACE JCTWVCSXT3660%MONITOR JCTWVOMARWVCSXT8440%LOGANWVHOBET NO 7WVCSXT6440%LEVISA JCTKYSLONES BRANCHKYCSXT6440%LEVISA JCTKYSLONES BRANCHKYCSXT1220%RUN JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYMYRA 1KYCSXT3114140%PENNINGTONVAST CHARLESVACSXT5110%ST CHARLESVACSXT1000%PASKERTVAST CHARLESVACSXT110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%
MONITOR JCTWVOMARWVCSXT8440%LOGANWVHOBET NO 7WVCSXT6440%LEVISA JCTKYSLONES BRANCHKYCSXT1220%RUN JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYMYRA 1KYCSXT15550%COALRUNKYBURKE STATIONKYCSXT3114140%PENNINGTONVASTCHPRLESVACSXT110%ST <charles< td="">VATURNEKS STAVACSXT110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%</charles<>
LOGANWVHOBET NO 7WVCSXT6440%LEVISA JCTKYSLONES BRANCHKYCSXT1220%RUN JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYMYRA 1KYCSXT15550%COALRUNKYBURKE STATIONKYCSXT3114140%PENNINGTONVASTCHPRLESVACSXT5110%ST CHARLESVATURNEKS STAVACSXT110%0%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT2110%
LEVISA JCTKYSLONES BRANCHKYCSXT12204RUN JCTWVISLAND CRK NO 2WVCSXT81105GLADE CRK JCTWVCARENWVCSXT32205DAWKINSKYSKYLINEKYCSXT351105SHELBY JCTKYMYRA 1KYCSXT351105COALRUNKYBURKE STATIONKYCSXT31141405PENNINGTONVAST CHPRLESVACSXT51105ST CHARLESVATURNEKS STAVACSXT1005PASKERTVAST CHARLESVACSXT1105SAVOYKYGATLIFFKYCSXT162205HEIDRICKKYHORSE CRK JCTKYCSXT220005
RUN JCTWVISLAND CRK NO 2WVCSXT8110%GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYMYRA 1KYCSXT15550%COALRUNKYBURKE STATIONKYCSXT3114140%PENNINGTONVAST CHPRLESVACSXT5110%ST CHARLESVATURNEKS STAVACSXT100%PASKERTVAST CHARLESVACSXT110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%
GLADE CRK JCTWVCARENWVCSXT3220%DAWKINSKYSKYLINEKYCSXT35110%SHELBY JCTKYMYRA 1KYCSXT15550%COALRUNKYBURKE STATIONKYCSXT3114140%PENNINGTONVAST CHPRLESVACSXT5110%ST CHARLESVATURNEKS STAVACSXT100%PASKERTVAST CHARLESVACSXT110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT2200%0%
DAWKINSKYSKYLINEKYCSXT351101SHELBY JCTKYMYRA 1KYCSXT155505COALRUNKYBURKE STATIONKYCSXT31141405PENNINGTONVASTCHPRLESVACSXT51105STCHARLESVATURNERSSTAVACSXT51105PASKERTVASTCHARLESVACSXT1105SAVOYKYGATLIFFKYCSXT162205HEIDRICKKYHORSE CRK JCTKYCSXT220005
SHELBY JCTKYMYRA 1KYCSXT15550%COALRUNKYBURKE STATIONKYCSXT3114140%PENNINGTONVASTCHPRLESVACSXT5110%ST <charles< td="">VATURNEKS STAVACSXT1000%PASKERTVAST<charles< td="">VACSXT1110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%</charles<></charles<>
COALRUNKYBURKE STATIONKYCSXT31141404PENNINGTONVAST CHPRLESVACSXT51104ST CHARLESVATURNEKS STAVACSXT10004PASKERTVAST CHARLESVACSXT11104SAVOYKYGATLIFFKYCSXT162204HEIDRICKKYHORSE CRK JCTKYCSXT220004
PENNINGTONVAST CHPRLESVACSXT5110%ST CHARLESVATURNERS STAVACSXT1000%PASKERTVAST CHARLESVACSXT1110%SAVOYKYGATLIFFKYCSXT16220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%
ST CHARLESVATURNERS STAVACSXT10004PASKERTVAST CHARLESVACSXT11104SAVOYKYGATLIFFKYCSXT162204HEIDRICKKYHORSE CRK JCTKYCSXT220004DACKEDTVACSXT220004
PASKERTVAST CHARLESVACSXT1110%SAVOYKYGATLIFFKYCSXT18220%HEIDRICKKYHORSE CRK JCTKYCSXT22000%HEIDRICKVAHORSE CRK JCTKYCSXT22000%
SAVOYKYGATLIFFKYCSKT182201HEIDRICKKYHORSE CRK JCTKYCSKT220001HEIDRICKVAHORSE CRK JCTKYCSKT220001
HEIDRICK KY HORSE CRK JCT KY CSXT 22 0 0 00
PASKERT VA MATEDUNER VA COAL 6 1 1 1
HARBELL KY MIDDLESBORO KY CSXT 10 1 1 0
CATO KY POPEVILLE KY CSXT 1 0 0 0
CATO KY CLUMMES KY CSXT 2 0 0 04
MUDDLESBORO KY STONY FORK JCT KY CSKT 3 1 1
STONY FORK JCT KY BURLEY KY CSKT 3 1 1 04
GLIDDEN KY BEECH KY CSXT 2 1 1 04

Added the second define whether whether the second states and the second s

	SEGMENT				ADJ. 1995 BASE	Post- Acquisition		
FROM STATIO	N	TO STATION		ROAD	HILLES	TONS	TONS	IN TONS/IR
STRAIGHT CRK	KY	CLOVER	KY	CSXT	21	8	8	01
STRAIGHT CRK	KY	HEYBURN	KY	CSXT	5	3	3	01
HEYBURN	KY	WEN-LAR	KY	CSXT	7	3	3	05
TYPO	KY	WAHOO	KY	CSXT	3	1	1	01
JEFF	KY	KENMONT	KY	CSXT	1	3	3	01
BLACKEY	KY	HCT SPOT	KY	CSXT	7	2	2	01
JEFF	KY	VICCO	KY	CSXT	6	4	4	0
PAT	KY	SAPPHIRE	KY	CSXT	2	5	5	01
BAXTER	KY	CLOVERLICK JCT	KY	CSXT	21	7	7	01
CLOVERLICK JCT	KY	LYNCH 3	KY	CSXT	1	7	7	01
HARLAN	KY	PARKDALE	KY	CSXT	8	3	3	01
PARKDALE	KY	PILLSBURY	KY	CSXT	1	2	2	05
PILLSBURY	KY	HIGHSPLINT	KY	CSXT	6	2	2	05
HIGHSPLINT	KY	GLENBROOK	KY	CSXT	13	1	1	05
BUFFEN	KY	BLUE GRASS 4	KY	CSXT	3	1	1	05
DRESSEN	KY	GULSTON	KY	CSXT	4	0	0	01
GUI.STON	KY	BARDO	KY	CSXT	3	0	0	01
N. HAZARD	KY	DUNNE	KY	CSXT	4	6	6	01
PARKDALE	KY	KENVIR 3	KI	CSXT	1	0	0	01
HIGH SPRINGS	FL	NEWBERRY	FL	CSXT	42	0	0	01
STARKE	FL.	NEWBERRY	FL	CSXT	40	7	8	154
NEWBERRY	FL	DUNNELLON	FL	CSXT	47	5	6	194
DUNNELLON	FL	RED LEVEL JCT	FL	CSXT	10	5	6	194
VITIS	FL	LAKELAND	FL	CSXT	19	17	18	51
LAKELAND	FL	EATON PARK	FL	CSXT	5	0	0	01
BARTOW	FL	BOWLING GREEN	FL	CSXT	19	3	3	01
BURNETTS LAKE	FL	GAINESVILLE	FL	CSXT	14	0	0	01
CLEARWATER	FL	ST PETERSBURG	FL	CSXT	15	0	0	01
HAWTHORNE	FL	KEUKA	FL	CSXT	11	0	0	01
WINSTON	FL	MULBERRY	FL	CSXT	12	15	15	01
ACHAN	FL	MULBERRY	FL	CSXT	6	9	9	01
ACHAN	FL	BONNIE	FL	CSXT	4	6	6	01
ACHAN	FL	GREEN BAY	FL	CSXT	4	14	14	01
GREEN BAY	FL	NORALYN	FL	CSXT	1	4	1	01
AGRICOLA	FL	GREEN BAY	FL	CSXT	4	10	10	01
YEOMAN YARD	FL	SUTTON	FI.	CSXT	5	. 38	38	01

<u>^</u>						ADJ. 1995	POST-	
	SEG	MENT TO STATION		BOND	MILEA	EASE	ACQUISITION	CHANGE
	<u></u>			COVE		10	10	
SUTTON	5.P	BIG BEND JCT.	5.P	CSXT		18	18	0.
BIG BEND JCT	FL	ONECO	FL	CSXT	28	3	3	01
WELCOME JCT	FL	PLANT CITY	FL	CSXT	11	3	3	01
EDISON JCT	FL	WELCOME JCT	FL	CSXT	2	35	35	01
EDISON JCT	FL	MULBERRY	FL	CSXT	5	19	19	05
ALERT	FL	BARTOW	FL	CSXT	5	5	5	05
EDISON JCT	FL	BREWSTER	FL	CSXT	11	25	25	01
BREWSTER	FL	AGROCK	FL	CSXT	4	18	18	01
AGROCK	FL	FOUR CORNERS	FL	CSXT	12	4	4 /	01
AGROCK	FL	ARCADIA	FL	CSXT	35	1	1	01
BREWSTER	FL	LONESOME	FL	CSXT	12	2	2	01
BRADLEY JCT	FL	PIERCE	FL	CSXT	6	3	3	01
ACHAN	FL	PIERCE	FL	CSXT	5	3	3	01
ALERT	FL	BONNIE	FL	CSXT	2	7	7	01
BRADLEY JCT	FL	AGRICOLA	FL	CSXT	7	13	13	01
AGRICOLA	FL	ROCKLAND JCT	FL	CSXT	8	5	5	05
HIALEAH	FL	HOMESTEAD	FL	CSXT	30	1	1	01
GARY	FL	SULPHUR SPRGS	FL	CSXT	5	6	6	01
SULPHUR SPRGS	FL	CLEARWATER	FL	CSXT	26	1	1	01
WELCOME JCT	FL	VALRICO	FL	CSXT	12	32	32	01
SULPHUR SPRGS	FL	ROCK	FL	CSXT	45	2	2	01

Operating Plan Attachment 13.8

Page 14 of 14

-

-

disting ?"

a sea a sea of the

	SEG	MENT				ADJ. 1995 BASE	POST- Acouisition	CHANGE
FROM STATI	ON	TO STATION		ROAD	MILES	TONS	TONS	IN TUNS/YR
Columbus	OH	Hocking	OH	CR	1	29	12	-601
Galion	OH	Columbus	OH	CR	57.7	29	12	-591
Berea	Oll	Greenwich	OH	CR	42	31	108	2501
Greenwich	Oll	Crestline	OH	CR	21.2	31	58	885
Crestline	OH	Galion	OH	CR	3.3	67	52	-22%
Galion	OH	Marion	OH	CR	22.5	39	42	61
Marion	Oll	Ridgeway	OH	CR	23.2	39	51	311
Ridgeway	OH	Sidney	OH	CR	38.3	51	55	81
Sidney	Oll	So. Anderson	iN	CR	85.6	51	40	-221
So. Anderson	IN	Indianapolis	IN	CR	35.1	63	41	-341
Indianapolis	IN	Avon	19	CR	12.5	61	38	-381
Avon	IN	Greencastle	IN	CR	27.5	52	42	-191
Greencastle	IN	Terre Haute	IN	CR	32	52	42	-201
Terre Haute	IN	Effingham	IL	CR	68.6	49	32	-351
Effingham	IL	St. Elmo	IL	CR	.3.7	48	28	-428
St. Elmo	IL	E. St. Louis	IL	CR	82.7	32	12	-60%
Terre Haute	IN	Paris	IL	CR	21.5	2	0	-751
Paris	IL	Chrisman	IL	CR	10.6	1	0	-1001
Chrisman	IL	Danville	IL	CR	24.9	1	0	-100%
Danville	IL	olin	IN	CR	11.3	0	0	01
Indianapolis	IN	Kraft	IN	CR	3	9	9	51
Kraft	IN	Avon	IN	CR	5.6	9	10	101
Avon	IN	Clermont	IN	CR	4	12	13	61
Clermont	IN	Crawfordsville	IN	CR	34.2	12	12	15
Clermont	IN	Frankfort	IN	CR	37.2	1	1	01
Shelbyville	IN	Indianapolis	IN	CR	28.3	0	0	01
Stanley	OH	Dunkirk	oli	CR	57.2	19	0	-981
Dunkirk	OH	Ridgeway	OH	CR	21.1	19	0	-981
Ridgeway	OH	Marysville	OH	CR	22.2	27	14	-491
Marysville	OH	Darby	OH	CR	19.2	27	5	-821
Darby	OH	Mounds	OII	CR	2.6	3	1	-485
Mound a	OH	Scioto	OH	Cit	5.8	3	1	-49%
Crestline	OH	Bucyrus	OH	CR	11.9	4	19	4175
Bucyrus	OH	Adams	IN	CR	113.5	4	19	4125
Adams	IN	Ft. Wayne	IN	CR	5	3	19	4601
Ft. Wayne	IN	Warsaw	IN	NS	39.7	4	13	2145

Operating Plan Attachment 13.9

Page 1 of 4

SEGMENT					ADJ. 1995	POST-	A CHANGE	
FROM STATI	ON	TO STATIC	N	ROAD	MILES	TONS	TONS	IN TONS/IR
Warsaw	IN	Tolleston	IN	NS	83.1		12	206
Tolleston	IN	Clark Jct	IN	CR	3.9	0	12	100001
Decatur	IN	Adams	IN	CR	16.2	1	1	01
Buffalo	NY	Draw	NY	CR	1.7	92	110	201
Draw	NY	Buff Crk Jct	NY	CR	0.4	97	101	45
Buff Crk Jct	NY	Buff Seneca	NY	CR	3.3	104	101	-21
Buff Seneca	NY	Ashtabula	OH	CR	122.8	103	100	-21
Ashtabula	OH	Quaker	OH	CR	46.5	103	108	51
Quiker	OH	Drawbridge	OH	CR	7.6	111	16	-851
Porter	IN	Willow Creek	IN	CR	6	21	0	-1005
Willow Creek	IN	Ivanhoe	IN	CR	12.8	21	23	61
Woodville	OH	Walbridge	OH	CR	13.5	2	2	01
CP Maumee	OH	Oak	OH	CR	1	35	1	-975
Oak	OH	Walbridge	OH	CR	1.7	39	1	-975
Quaker	OH	Mayfield	OH	CR	5.8	9	93	9331
Mayfield	OH	Marcy	OII	CR	3.3	9	93	9336
Marcy	OII	Short	HC	CR	8.8	26	95	2671
Short	OH	Berea	HC	CR	4	15	102	5781
Readville	MA	Boston	MA	MBTA	9.1	26	26	05
Mansfield	MA	Readville	MA	MBTA	15.5	16	16	01
Attleboro	MA	Mansfield	MA	MBTA	7.2	11	11	01
MA/RI	RI	Attleboro	MA	MBTA	6.1	5	5	01
Bridgeport	CT	New Haven	CT	CDOT	16	23	23	01
Norwalk	CT	Bridgeport	CT	CDOT	15.5	20	20	01
New Rochelle	NY	Norwalk	CT	CDOT	25	42	42	01
Woodl awn	NY	New Rochelle	NY	MNR	4.5	39	39	01
MO	NY	Moodlawn	NY	MNR	6.4	72	72	01
Mill River	CT	Cedar Hill	CT	CR	7	1	1	Ŭ\$
Readville	MA	Walpole	MA	MBTA	10	10	10	01
Walpole	MA	Franklin	MA	MPTA	8.9	7	7	01
Transfer	MA	Touer	MA	MBTA	9.5	9	9	01
Attleboro	MA	Dean	MA	CR	11.4	2	2	01
Dean	MA	Cotley	MA	CR	1.9	1	1	01
Weir	MA	New Bedford	MA	CR	18.5	0	0	01
Swamp	MA	Warf	MA	CR	12	0	0	01
Fitchburg	MA	Leominster	MA .	CR	4.3	0	0	04

Operating Plan Attachment 13.9

	SEG	MENT				ADJ. 1995 BASE	Post- Acquisition	CHANGE
FROM STATION		TO STATION		POAD	MILES	TONS	TONS	IN TONS/YR
Leominster	MA	Buro	MA	CR	26.2	1	1	01
Buro	MA	Framingham Cente	MA	CR	4.5	1	1	01
Mansfield	MA	Walpole	MA	CR	8.5	. 5	5	01
Walpole	MA	Medfield Jct	MA	CR	5.2	5	5	01
Medfield Jct	MA	Framingham	MA	CR	7.3	5	5	01
Boston Beacon Pa	MA	Framingham	MA	CR	18.3	22	24	91
Framingham	MA	Westboro	MA	CR	11.9	21	25	196
Westboro	MA	Worcester	MA	CR	11	24	26	91
Worcester	MA	Palmer	MA	CR	39	28	30	105
Palmer	MA	Springfield	MA	CR	15.3	28	30	76
Springfield	MA	Westfield	MA	CR	11	33	34	31
Westfield	MA	Selkirk	NY	CR	85	36	39	71
Selkirk	NY	Port of Albany	NY	CR	7.1	1	1	01
Carman	NY	S Schenectady	NY	CR	3.7	0	0	01
MO	NY	Poughkeepsie	NY	MNR	70.1	34	35	31
Poughkeepsie	NY	Stuyvesant	NY	CR	50.1	12	13	81
Stuyvesant	NY	Rensselaer	NY	CR	16.4	10	10	0\$
Stuyvesant	NY	Selkirk	HY	CR	10.2	6	6	01
Selkirk	NY	Hotfmans	NY	CR	25.4	79	88	136
Rensselaer	NY	17 Albany	NY	CR	4	8	8	01
W Albany	NY	Hoffmans	NY	AMTK	23	7	7	01
Hoffmans	NY	Utica	NY	CR	66.4	76	89	176
Utica	NY	Syracuse	NY	CR	50.6	78	88	145
Syracuse	NY	Syracuse Jct	NY	CR	5.5	82	89	91
Syracuse Jct	NY	Solvay	NY	CR	2	80	91	145
Solvay	NY	Lyons	NY	CR	42.3	80	91	145
Lyons	NY	Fairport	NY	CR	23.4	80	91	148
Fairport	NY	Rochester	NY	CR	10.7	66	73	105
Rochester	NY	Chili	NY	CR	12.7	69	76	105
Chili	NY	Frontier	NY	CR	50.5	80	92	165
Frontier	NY	Buffalo	NY	CR	4.1	101	98	-31
Lock	NY	CP59	NY	CR	2.7	5	6	51
Woodard	NY	Fort	NY	CR	25.8	2	2	01
CP59	NY	CP22	NY	CR	11.6	5	5	01
Buffalo	NY	CP Sycamore	NY	CR	1.2	7	15	109
CP Sycamore	NY	Black Rock	NY	CR	6,	15	26	736

						ADJ. 1995	POST-	
	SEG	MENT				BASE	ACQUISITION	• CHANGE
FROM STATION		TO STATION		ROAD	MILES	TONS	TONS	IN TONS/YR
Syracuse	NY	Oswego	NY	CR	30	1	1	01
Buffalo	NY	Black Rock	NY	CR	7.1	.1	1	01
Black Rock	NY	Niagara Falls	NY	CR	21.1	17	19	125
Fairport	NY	Genesee Jct	NY	CR	14.3	20	19	-45
Genesee Jct	NY	Chili	NY	CR	7.1	21	21	-19
Syracuse	NY	Woodard	NY	CR	4.2	14	14	19
Woodard	NY	Philadelphia	NY	CR	83.6	10	11	15
Philadelphia	NY	Massena	NY	CR	71	9	9	01
Massena	NY	Huntingdon	PQ	CR	38.9	5	5	05
Huntingdon	PQ	Cecile Jct	PQ	CR	14.4	1	1	0\$
Cecile Jct	PQ	Adirondack Jct	PQ	CR	24.3	1	1	01
Regis	NY	Philadelphia	NY	CR	11.3	0	0	05
Ridgefield Heigh	NJ	Newburgh	NY	CR	44.9	41	48	195
Newburgh	NY	Selkirk	NY	CR	80.1	42	48	134
Newtown Jct	PA	Quakertown	PA	SEPTA	35.8	32	32	01
Glenside	PA	Warminster	PA	SEPTA	8.4	9	9	01
Jenkintown	PA	Neshaminy Falls	PA	SEPTA	10.3	10	10	01
Lansdale	PA	Doylestown	PA	SEPTA	10.1	7	7	01
Park Jct	PA	Belmont	PA	CR	0.9	33	34	45
Belmont	PA	West Falls	PA	CR	1.3	44	50	134
West Falls	PA	CP Newtown Jct	PA	CR	3.7	13	16	185
CP Newtown Jct	PA	CP Wood	PA	CR	20.7	15	16	15
CP Wood	PA	Trenton	NJ	CR	5.7	17	16	-71
Trenton	NJ	CP Pt Reading	NJ	CR	24.7	17	16	-81
RG	PA	Field	PA	CR	2	0	17	10000\$
South Philadelph	EA	Field	PA	CR	5	6	25	3031
Field	PA	Belmont	PA	CR	4	11	20	80%
Landover	MD	Anacostia	DC	CR	5.4	5	11	1175
Anacostia	DC	Virginia Ave	DC	CR	2.5	40	45	125
Virginia Ave	DC	Potomac yard	VA	CR	6	40	48	185
Brandywine	DE	Chalk Pt	MD	CR	17.3	2	2	01
Bowie	MD	Brandywine	MD	CR	24.9	3	3	0
Brandywine	MD	Morgantown	MD	CR	20.7	2	2	01

Operating Plan Attachment 13.9

SHARED TERRITORY TRAIN DENSITIES

BEGMENT					1998 ADJ BAR		POST-	ACQUISITION	TRNS/DAY			
PROM STATION		TO STATION		ROAD	HILLS	-	PREIGHT	TOTAL	PEOR	PREIGHT	TOTAL	OF TRMS/DAT
	PA	Nevnesburg	PA	CR	27.6	0	19	19	0	19	19	0
W Brownswills	PA	Catavba Jct.	PA	CR	66.4	0	5.6	5.6	0	7.4	7.4	1.0
Catavba Jct	PA	Loveridge Mine	WV	CR	13.2	0	3.6	3.6	0	3.6	3.6	0
Nevneshura	PA	Napa	PA	CR	19.2	0	6.4	6.4	0	6.4	6.4	0
Nana	PA	Clif	PA	CR	2.3	0	3.4	3.4	0	3.4	3.4	0
C111	PA	Blacksville	PA	CR	4.8	0	3.4	3.4	0	3.4	3.4	0
Nevnethurg	PA	Bailey	PA	CR	14.6	0	10.2	10.2	0	10.2	10.2	0
C146	PA	Pederal	PA	CR	5.9	0	1.0	1.0	0	1.8	1.0	0
4 Detroit	MT	North Yard	IM	CR	6.7	0	7.9	7.9	0	13.2	13.2	5.3
North Yard	MI	Utica	MI	CR	17.1	0	0.3	8.3	0	9.6	9.6	1.3
North Detroit	MI	Delray	MI	CR	2.4	0	12.7	12.7	0	16.5	16.5	3.8
Delease	MI	frenton	MI	CR	10.2	0	14.0	14.0	0	16.5	16.5	1.7
Castaton	MT	tcores	MI	CR	20	0	2	2	0	11.2	11.2	9.2
u Dettett	MT	Dearborn	MI	CR	4.5	6	1.6	7.6	6	3.4	5.4	1.0
WDetroit		N Bergen	NJ	CR		0	4.4	4.4	0	1.4	1.4	- 3
Nave Nave	NJ	Ridgefield Hts	NJ	CR	5.6	0	23.1	23.1	0	22.1	22.1	-1
N bergen	11.1	High Bridge	NJ	NJT	39	56	1.6	\$7.6	56	1.6	\$7.6	0
Haica	NJ	Red Bank	NJ	NJT	15.9	60	1.6	61.6	60	1.6	61.6	0
Bed Benk	NJ	Lekeburst	NJ	CR	20.9	0	1.6	1.6	0	1.6	1.6	0
CO	NJ	Monmouth Jct	NJ	CR	10.0	0	3.4	3.4	0	3.4	3.4	0
PN	NJ	Bavvav	NJ.	CR	9.1	0	10.9	10.9	0	16.2	16.2	5.3
Paravar.	N.J	PD	NJ	CR	6.4	0	6	6	0	7.7	7.7	1.7
bayesy	NJ	Nood	NJ	CR	3.1	0	•	•	0	•	•	0
lamashura	11.3	Farmingdale	NJ	CR	19	0	1.6	1.6	0	1.6	1.6	0
Neve	NJ	CP Green	NJ	CR	4.2	0	10.5	18.5	0	16.5	16.5	-2
Neve	NJ	Croston	NJ	CR	1.0	0	10.5	10.5	0	15.5	15.5	-1
Green	NJ	Oak Island	NJ	CR	1.3	0	10.5	18.5	0	10.5	10.5	
Hack	NJ	Croxton	NJ	CR	1.3	0	17.7	17.7	0	0.2	8.2	-9.5
Croston	NJ	North Bergen	NJ	CR	2.7	0	19.1	19.1	0	19.2	19.2	0.1
Naldo	NJ	Hack	NJ	CR	1.6	0	4.0	4.6	0	2.	2.0	-1
Hack	NJ	Keetny	NJ	CR	1.7	0	17.4	17.4	0	0.Z	0.2	-9.2
Keerny	NJ	Valley	NJ	CR	3.6	0	19.6	19.6	0	3.9	3.9	-13.7
Velley	LN	NK	NJ	CR	0.8	0	24.5	24.5	0	23.7	23.7	-0.8
Pt Reading Jct	NJ	Port Reading	LN	CR	16	0	3.6	3.6	0	5.3	3.3	
NK	NJ	Boundbrook	NJ	CR	21.7	56	36	92	56	25.5		-10.5
Boundbrook	NJ	Pt Reading Jct	NJ	CR	2.7	•	34.2	34.2		21.0	21.4	
Park Jet	PA	Phil Frankfort	PA	CR	6.1	0	7.0	7.		10.7	10.7	
Phil Frankfort	PA	Canden	NJ	CR	4.1	0	7.0	7.	0	10.7	10.7	4.5
Eastvick	PA	Lester	PA	CR	6.1	0	3.2	3.2	0	3.2	3.2	
Noodbury	NJ	Paulaboro	NJ	CR	5.5	0	3.2	3.2	0	3.2	3.2	
Paulaboro	NJ	Deepwater	NJ	CR	15.7	0	2	2	0	2	:	
Cooper	NJ	Woodbury	NJ	CR		0	2	2	0	2		
Lane	LN	Union	NJ	AMTK	7.1	240	3.4	243.4	240	11	251	
Union	NJ	Midway	NJ	AMTK	21.6	166	3.4	169.4	166	11	111	1.0
Midvev	NJ	Morrieville	PA	AMTK	17.3	156	3.4	159.4	156		107	
Morrieville	PA	200	PA	AMTK	20.5	132	3.4	135.4	132	7.1	139.1	3.7
Arsenal	PA	Davis	DE	AMTK	25	116	2.3	110.3	116	10.5	120.5	1.2
Davis	DE	Perryville	MD	MAK	21.1	67	4.5	71.5	.,	12.4	19.4	
Perryville	MD	Baltimore	MD	NALK	32.4	11	14.3	91.3	11	15.0	92.0	
Baltimore	MD	Bovie	MD	MAK	20.6	99	2.4	101.4		1.1	100.7	
Bovie	MD	Landover	MD	AMTK	0.3	,,	3.2	102.2	"	12.5	111.5	5.5

Operating Plan Attachment 13.7 Page 1 of 1

SHARED TERRITORY TRAFFIC DENSITIES ESTIMATED CHANGES IN MILLIONS OF GROSS TONS

	SEC	MENT				ADJ. 1995	POST-	A CHANGE
FROM STATIO	N	TO STATION		ROAD	MILES	TONS	TONS	IN TONS/TR
W. Brownsville	PA	Waynesburg	PA	CR	27.6	47	47	01
W.Brownsville	PA	Catawba Jct.	PA	CR	66.4	6	8	331
Catawba Jct	PA	Loveridge Mine	WV	CR	13.2	6	6	01
Waynesburg	PA	Wana	PA	CR	19.2	21	21	01
Wana	PA	clif	PA	CR	2.3	6	6	01
clif	PA	Blacksville	PA	CR	4.8	4	4	01
Waynesburg	PA	Bailey	PA	CR	14.6	24	24	01
clif	PA	Federal	PA	CR	5.9	6	6	01
W Detroit	MI	North Yard	MI	CR	6.7	6	14	1195
North Yard	MI	Utica	MI	CR	17.1	6	6	-21
West Detroit	MI	Delray	MI	CR	2.4	11	17	531
Celray	MI	Trenton	MI	CR	10.2	28	24	-149
Carleton	MI	Ecorse	MI	CR	20	1	15	28021
W Detroit	MI	Dearborn	MI	CR	4.5	3	3	01
Nave	NJ	N Bergen	NJ	CR	6	13	0	-971
N Bergen	NJ	Ridgefield Heig	h NJ	CR	5.6	41	42	45
Aldene	NJ	High Bridge	NJ	TLM	39	13	13	01
Union	NJ	Red Bank	NJ	NJT	15.9	13	13	01
Red Bank	NJ	Lakehurst	NJ	CR	28.9	0	0	01
CQ	NJ	Monmouth Jct	NJ	CR	18.8	0	0	01
PN	NJ	Bayway	NJ	CR	9.1	10	16	621
Ваунау	NJ	PD	NJ	CR	6.4	7	10	471
PD	NJ	Wood	th	CR	3.1	4	4	18
Jamesburg	NJ	Farmingdale	NJ	CR	19	0	0	01
Nave	NJ	CP Green	NJ	CR	4.2	25	25	15
Nave	NJ	Croxton	NJ	CR	1.8	25	25	01
Green	NJ	Oak Island	NJ	CR	1.3	25	28	115
Hack	NJ	Croxton	NJ	CR	1.3	17	8	-521
Croxton	NJ	North Bergen	NJ	CR	2.7	2.3	28	131
Waldo	NJ	Hack	NJ	CR	1.6	7	1	-901
Hack	NJ	Kearny	NJ	CR	1.7	27	8	-691
Kearny	NJ	Valley	NJ	CR	3.6	21	4	-815
Valley	NJ	NK	NJ	CR	0.8	43	39	-91
Pt Reading Jct	NJ	Port Reading	NJ	CR	16	6	8	435
NK	NJ	Boundbrook	NJ	CR	21.7	46	43	-81
Boundbrook	NJ	Pt Reading Jct	NJ	CR	2.7	44	45	31

Operating Plan Attachment 13.10

Page 1 of 2

SHARED TERRITORY TRAFFIC DENSITIES ESTIMATED CHANGES IN MILLIONS OF GROSS TONS

	SEG	MENT				ADJ. 1995	POST-	A CHANGE
FROM STATION	1	TO STATION	ROAD		MILES	TONS	TONS	IN TONS/YR
Park Jct	PA	Phil Frankfort	PA	CR	6.1	14	17	271
Phil Frankfort	PA	Camden	NJ	CR	4.1	13	17	291
Eastwick	PA	Lester	PA	CR	6.1	6	6	14
Woodbury	NJ	Paulsboro	NJ	CR	5.5	4	4	01
Paulsboro	NJ	Deepwater	NJ	CR	15.7	4	4	01
Cooper	NJ	Woodbury	NJ	CR	8.8	5	5	05
Lane	NJ	Union	NJ	AMTK	7.1	59	76	295
Union	NJ	Midway	NJ	AMTK	21.6	41	58	415
Midway	NJ	Morrisville	PA	AMTK	17.3	37	54	465
Morrisville	PA	200	PA	AMTK	28.5	33	41	251
Arsenal	PA	Davis	DE	AMTK	25	28	46	635
Davis	DE	Perryville	MD	AMTK	21.1	26	45	745
Perryville	MD	Baltimore	MD	AMTK	32.4	42	45	75
Baltimore	MD	Bowle	MD	AMTK	28.6	25	37	495
Bowie	MD	Landover	MD	AMTK	8.3	29	43	514

Operating Plan Attachment 13.10 APPENDIX H NS - CHANGES IN LINE DENSITIES BY TRAIN AND BY GROSS TONNAGE FOR EXISTING NS SYSTEMS, CONRAIL LINES TO BE ACQUIRED BY NS, AND SHARED ASSETS AREAS. SOURCE: NS OPERATING PLAN

Figure D.6-1

				BASE CASE		POST	CONSOLIDATIO	N CASE	
Station	Station	Miles	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	CHANGE IN TRAINS
Oak Island NJ	Aldene NJ	8	50.0	21.5	71.5	50.0	12.5	62.5	-9.0
Aldene NJ	Manville NJ	20	0.0	21.8	21.8	0.0	12.8	12.8	-9.0
Manville NJ	Bethlehem PA	52	0.0	18.7	18.7	0.0	17.4	17.4	-1.3
Bethlehem PA	Allentown PA	3	0.0	17.2	17.2	0.0	13.3	13.3	-3.9
Allentown PA	Burn PA	3	0.0	24.9	24.9	0.0	21.3	21.3	-3.6
Bethlehem PA	Burn PA	5	0.0	10.1	10.1	0.0	9.6	9.6	-0.5
Burn PA	Rdg Belt Jct PA	37	0.0	36.4	36.4	0.0	30.9	30.9	-5.5
Rdg Belt Jct PA	WM Jct PA	4	0.0	31.2	31.2	0.0	26.3	26.3	-4.9
WM Jct PA	Rutherford PA	45	0.0	42.4	42.4	0.0	49.7	49.7	7.4
Rutherford PA	Harrisburg PA	6	0.0	44.3	44.3	0.0	57.9	57.9	13.6
Harrisburg PA	Marysville PA	9	4.0	42.4	46.4	4.0	49.1	53.1	6.7
Oak Island NJ	Greenville NJ	4	0.0	17.1	17.1	0.0	8.7	8.7	-8.4
Oak Island NJ	E Rail TV NJ	6	0.0	10.4	10.4	0.0	15.2	15.2	4.7
E Rail TV NJ	Port Reading NJ	8	0.0	5.7	5.7	0.0	6.0	6.0	0.3
Port Reading NJ	South Amboy NJ	6	0.0	2.9	2.9	0.0	2.4	2.4	-0.5
Bound Brook NJ	Port Reading NJ	15	0.0	2.4	2.4	0.0	5.1	5.1	2.7
Phillipsburg NJ	Dover NJ	47	0.0	1.1	1.1	0.0	1.4	1.4	0.3
Hazelton PA	Lehighton PA	29	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Lehighton PA	Allentown PA	29	0.0	5.7	5.7	0.0	4.3	4.3	-1.4
Reading PA	Reading Belt Jct. PA	2	0.0	6.0	6.0	0.0	4.9	4.9	-1.1
West Falls PA	Abrams PA	14	0.0	17.3	17.3	0.0	14.0	14.0	-3.3
Abrams PA	WM Jct. PA	39	0.0	25.1	25.1	0.0	27.4	27.4	2.3
Oak Island NJ	Morrisville PA	49	172.0	4.4	176.4	172.0	7.3	179.3	2.9
Morrisville PA	Abrams PA	32	0.0	7.7	7.7	0.0	10.3	10.3	2.6
Earnest PA	Coatsville PA	29	0.0	1.4	1.4	0.0	1.4	1.4	0.0
West Falls PA	Wayne Jct PA	4	0.0	7.3	7.3	0.0	4.0	4.0	-3.3
Zoo PA	Arsenal PA	2	0.0	5.4	5.4	0.0	9.3	9.3	3.9
Arsenal PA	Greenwich PA	3	0.0	5.4	5.4	0.0	6.9	6.9	1.5
Eastwick PA	Marcus Hook PA	12	0.0	3.0	3.0	0.0	7.8	7.8	4.8
CSX Park Jct PA	Frankfrd Jct PA	5	0.0	4.7	4.7	0.0	6.1	6.1	1.4
Frankfrd Jct PA	Pavonia NJ	4	28.0	4.7	32.7	28.0	5.7	33.7	1.0

Figure D.6-1

			BASE CASE			POST CONSOLIDATION CASE			
Station	Station	Miles	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	CHANGE IN TRAINS
Pavonia NJ	Woodbury NJ	9	0.0	3.8	3.8	0.0	5.0	5.0	1.2
Woodbury NJ	Paulsboro NJ	5	0.0	2.6	2.6	0.0	3.1	3.1	0.5
Paulsboro NJ	Carneys Pnt NJ	16	0.0	1.7	1.7	0.0	1.7	1.7	0.0
Woodbury NJ	Millville NJ	30	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Bulson St NJ	Winslow Jct NJ	23	0.0	1.7	1.7	0.0	0.6	0.6	-1.1
Winslow Jct NJ	Palermo Coal NJ	34	0.0	0.3	0.3	0.0	0.3	0.3	0.0
Pavonia NJ	Burlington NJ	15	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Morrisville PA	Frankfrd Jct PA	23	131.0	1.0	132.0	131.0	4.3	135.3	3.3
Frankfrd Jct PA	Zoo PA	6	153.5	0.0	153.5	153.5	2.5	156.0	2.4
Arsenal PA	Marcus Hook PA	15	97.0	0.0	97.0	97.0	0.0	97.0	0.0
Marcus Hook PA	Perryville MD	43	76.1	3.8	79.9	76.1	7.5	83.5	3.6
Perryville MD	Bay View MD	32	77.0	12.2	89.2	77.0	13.5	90.5	1.3
Bayview MD	Washington DC	44	98.6	1.8	100.4	98.6	5.7	104.3	4.0
Bell DE	Edgemoor DE	1	0.0	5.0	5.0	0.0	11.8	11.8	6.8
Newark DE	Harrington DE	56	0.0	3.1	3.1	0.0	4.5	4.5	1.3
Harrington DE	Pocomoke DE	64	0.0	1.2	1.2	0.0	1.4	1.4	0.2
Harrington DE	Indian River Coal DE	43	0.0	0.9	0.9	0.0	0.9	0.9	0.0
Wayne NJ	Croxton NJ	19	0.0	0.6	0.6	0.0	0.9	0.9	0.3
Croxton NJ	Suffern NY	28	58.9	5.1	64.0	58.9	8.2	67.1	3.1
Suffern NY	CampbellHall NY	35	13.4	4.7	18.1	13.4	7.7	21.1	3.0
Campbell Hall NY	Port Jervis NY	30	13.4	7.9	21.3	13.4	12.0	25.4	4.1
Port Jervis NY	Binghamton NY	126	0.0	7.9	7.9	0.0	12.0	12.0	4.1
Binghamton NY	Waverly NY	42	0.0	13.0	13.0	0.0	19.9	19.9	6.9
Waverly NY	Corning NY	36	0.0	16.4	16.4	0.0	21.4	21.4	5.0
Corning NY	Buffalo NY	128	0.0	13.6	13.6	0.0	20.6	20.6	7.0
Waverly NY	Mehoopany PA	59	0.0	1.5	1.5	0.0	1.5	1.5	0.0
Sayre PA	Ludlowvie Coal NY	49	0.0	2.0	2.0	0.0	1.3	1.3	-0.7
Corning NY	Geneva NY	57	0.0	0.2	0.2	0.0	1.6	1.6	1.4
Marysville PA	Enola PA	5	0.0	23.7	23.7	0.0	18.4	18.4	-5.3
Enola Pa	Wago YorkHaven PA	18	0.0	19.3	19.3	0.0	12.9	12.9	-6.4
Wago YorkHaven PA	Perryville PA	58	0.0	16.0	16.0	7.0	14.1	14.1	-1.9

			BASE CASE			POST CONSOLIDATION CASE			
Station	Station	Miles	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	CHANGE IN TRAINS
Wago YorkHaven PA	York PA	10	0.0	1.7	1.7	0.0	1.1	1.1	-0.6
Cola PA	Lancaster PA	12	0.0	2.0	2.0	0.0	1.7	1.7	-0.3
Harrisburg PA	Shocks PA	22	0.0	2.2	2.2	0.0	6.0	6.0	3.8
Harrisburg PA	Hagerstown PA	74	0.0	11.2	11.2	0.0	19.4	19.4	8.2
Rockville PA	Watsontown PA	64	0.0	5.0	5.0	0.0	7.0	7.0	2.0
Watsontown PA	Montgomery PA	7	0.0	7.6	7.6	0.0	6.9	6.9	-0.7
Montgomery PA	Linden PA North	22	0.0	3.3	3.3	0.0	5.0	5.0	1.7
Montgomery PA	Linden PA South	22	0.0	4.2	4.2	0.0	2.0	2.0	-2.2
Linden PA	Keating PA	59	0.0	7.4	7.4	0.0	7.9	7.9	0.5
Keating PA	Ebenezer Jct NY	149	0.0	4.2	4.2	0.0	4.2	4.2	0.0
Ebenezer Jct NY	Buffalo NY	6	0.0	0.0	0.0	0.0	3.6	3.6	3.6
Watsontown PA	Straw Rdg CL PA	13	0.0	2.3	2.3	0.0	1.7	1.7	-0.6
Marysville PA	Pitcairn PA	227	4.0	42.5	46.5	4.0	42.8	46.8	0.2
Pitcairn PA	Jacks Run PA	18	4.0	32.8	36.8	4.0	36.6	40.6	3.8
Jacks Run PA	Conway East PA	16	4.0	50.4	54.4	4.0	49.8	53.8	-0.6
Conpitt Jct PA	Avonmre Coal PA	28	0.0	1.4	1.4	0.0	2.9	2.9	1.5
Avonmre Coal PA	Etna PA	44	0.0	0.6	0.6	0.0	1.7	1.7	1.1
Etna PA	Federal St PA	6	0.0	1.7	1.7	0.0	2.0	2.0	0.3
Pitcairn PA	Thomson PA	3	0.0	9.7	9.7	0.0	6.7	6.7	-3.0
Thomson PA	Jacks Run PA	16	0.0	15.5	15.5	0.0	9.9	9.9	-5.6
Thomson PA	W Brownsvile PA	42	0.0	23.1	23.1	0.0	11.8	11.8	-11.3
W Brownsvile PA	Blacksvle Coal WV	54	0.0	10.5	10.5	0.0	5.5	5.5	-5.0
Blacksvle Coal WV	Fed 2 Coal WV	6	0.0	2.4	2.4	0.0	0.9	0.9	-1.5
Emerald Coal PA	Bailey MineCL PA	15	0.0	8.4	8.4	0.0	5.6	5.6	-2.8
W Brownsvile PA	Loveridge Coal WV	81	0.0	5.2	5.2	0.0	3.1	3.1	-2.2
Conway East PA	Rochester PA	5	4.0	57.1	61.1	4.0	48.7	52.7	-8.4
Rochester PA	Ashtabula OH	98	0.0	12.0	12.0	0.0	16.3	16.3	4.2
Ashtabula OH	Ashtabula Harbor OH	2	0.0	5.9	5.9	0.0	4.0	4.0	-1.9
Hubbard OH	Oil City PA	80	0.0	1.9	1.9	0.0	1.8	1.8	-0.1
Youngstown OH	Alliance OII	42	0.0	1.8	1.8	0.0	2.5	2.5	0.7
Latimer OH	Warren OH	11	0.0	0.9	0.9	0.0	0.6	0.6	-0.3

Figure D.6-1

			BASE CASE			POST CONSOLIDATION CASE			
Station	Station	Miles	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	CHANGE IN TRAINS
Rochester PA	Yellow Creek OH	26	0.0	6.2	6.2	0.0	4.6	4.6	-1.6
Yellow Creek OH	Mingo Jct OH	20	0.0	7.7	7.7	0.0	7.2	7.2	-0.5
Mingo Jct OH	Weirton OH	3	0.0	6.0	6.0	0.0	6.9	6.9	0.9
Mingo Jct OH	MartinsFerry OH	18	0.0	1.7	1.7	0.0	1.4	1.4	-0.3
Yellow Creek OH	Alliance OH	41	0.0	2.0	2.0	0.0	2.6	2.6	0.6
Rochester PA	Alliance OH	57	2.0	37.9	39.9	2.0	26.3	28.3	-11.6
Alliance OH	Crestline OH	106	0.0	19.1	19.1	0.0	6.6	6.6	-12.6
Columbus OH	Charleston WV	185	0.0	4.1	4.1	0.0	3.4	3.4	-0.7
Charleston WV	Dickinson WV	14	0.0	4.3	4.3	0.0	4.6	4.6	0.3
Dickinson WV	Peters Jct WV	41	0.0	1.6	1.6	0.0	2.7	2.7	1.1
Deepwater WV	Fola Mine WV	17	0.0	0.6	0.6	0.0	2.0	2.0	1.4
Scioto OH	Alton OH	6	0.0	3.3	3.3	0.0	5.6	5.6	2.3
Alton OH	Ivorydale OH	109	0.0	11.3	11.3	0.0	18.4	18.4	7.1
Alliance OH	White OH	46	2.0	26.4	28.4	2.0	27.8	29.8	1.5
White OH	Cleveland OH	11	2.0	12.5	14.5	2.0	26.8	28.8	14.3
Kinsman OH	North Randall OH	9	0.0	0.9	0.9	0.0	1.4	1.4	0.5
Cleveland OH	Shortline Jct OH	7	0.0	2.0	2.0	0.0	2.0	2.0	0.0
Cleveland OH	Vermillion OH	43	4.0	48.4	52.4	4.0	24.4	28.4	-24.0
Vermillion OH	Oak Harbor OH	43	4.0	48.3	52.3	4.0	36.2	40.2	-12.2
Oak Harbor OH	Airline OH	24	4.0	48.6	52.6	4.0	57.1	61.1	8.5
Airline OH	River Rouge MI	50	0.0	11.6	11.6	0.0	14.5	14.5	2.9
River Rouge MI	W. Detroit MI	5	0.0	22.9	22.9	0.0	25.6	25.6	2.8
W. Detroit MI	North Yd Ml	6	0.0	9.4	9.4	0.0	12.1	12.1	2.7
North Yard MI	Sterling MI	14	0.0	8.0	8.0	0.0	8.1	8.1	0.1
Ecorse Jct MI	Brownstown MI	4	0.0	1.4	1.4	0.0	1.4	1.4	0.0
West Detroit MI	Jackson MI	74	8.0	2.9	10.9	8.0	12.1	20.1	9.2
Jackson MI	Kalamazoo MI	67	8.0	5.4	13.4	8.0	12.0	20.0	6.7
Kalamazoo MI	Elkhart IN	55	0.0	7.0	7.0	0.0	6.5	6.5	-0.5
Jackson MI	Lansing MI	37	0.0	1.6	1.6	0.0	3.1	3.1	1.5
Kalamazoo MI	Grand Rapids MI	49	0.0	1.9	1.9	0.0	3.0	3.0	1.1
Airline OH	Butler IN	68	4.0	50.4	54.4	4.0	43.8	47.8	-6.6

Figure D.6-1

		BASE CASE			POST	N CASE			
Station	Station	Miles	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	PASS TRNS DAY	TOT FRT TRNS DAY	TOT TRNS DAY	CHANGE IN TRAINS
Butler IN	Elkhart IN	63	4.0	51.1	55.1	4.0	40.0	44.0	-11.2
Goshen IN	Alexandria IN	99	0.0	4.7	4.7	0.0	6.8	6.8	2.1
Alexandria IN	Anderson IN	13	0.0	4.3	4.3	0.0	0.0	0.0	-4.3
Elkhart IN	Porter IN	61	4.0	53.0	57.0	4.0	45.2	49.2	-7.9
Porter IN	Control Pt 501 IN	20	14.0	69.4	83.4	14.0	68.7	82.7	-0.7
Control Pt 501 IN	Indiana Hbr IN	1	14.0	43.4	57.4	14.0	56.5	70.5	13.1
Indiana Hbr IN	South Chgo IL	8	16.0	41.1	57.1	16.0	49.0	65.0	7.9
South Chgo IL	Ashland Ave IL	9	16.0	28.5	44.5	16.0	12.3	28.3	-16.1
Colehour IL	Calumet Park IL	5	0.0	1.1	1.1	0.0	2.4	2.4	1.3
Indiana Harbor IN	Kankakee IL	57	0.0	6.6	6.6	0.0	4.0	4.0	-2.6
Kankakee IL	Streator IL	49	0.0	4.9	4.9	0.0	5.0	5.0	0.0
Streator IL	Hennepin IL	32	0.0	2.3	2.3	0.0	1.0	1.0	-1.3
Schneider IL	Wheatfld Coal IN	21	0.0	2.6	2.6	0.0	2.9	2.9	0.3

			Base Case			Post-Acquisition Case			
Station	Station	Miles 22	Pagr Trains Day	Frt Trains Day	Total Trains Day	Psgr Trains Day	Frt Trains Day	Total Trains Day	Change In Trains
Alexandria VA	Manassas VA	22	11.7	7.8	19.5	11.7	9.6	21.3	1.8
Manassas VA	Montview VA	142	2.2	13.7	15.9	2.2	15.0	17.2	1.3
Montview VA	Altavista VA	21	3.0	15.4	17.4	2.0	19.6	21.6	4.2
Altavista VA	Greensboro NC	86	2.0	15.9	17.9	2.0	16.6	18.6	0.7
Greensboro NC	Linwood NC	41	6.0	20.2	26.2	6.0	18.3	24.3	-1.9
Linwood NC	Salisbury NC	9	6.0	24.7	30.7	6.0	23.3	29.3	-1.4
Salisbury NC	Charlotte NC	50	6.0	21.1	27.1	6.0	18.1	24.1	-3.0
Charlotte NC	Beaumont SC	70	2.0	18.1	20.1	2.0	14.0	16.0	-4.1
Beaumont SC	Hayne Yd SC	2	2.0	19.2	21.2	2.0	17.6	19.6	-1.6
Hayne Yd SC	Howell GA	181	2.0	16.9	18.9	2.0	16.5	18.5	-0.4
Riverton Jct VA	Manassas VA	51	0.0	11.3	11.3	0.0	8.8	8.8	-2.5
Hagerstown MD	Riverton Jct VA	59	0.0	11.3	11.3	0.0	19.9	19.9	8.6
Riverton Jct VA	Roanoke VA	181	0.0	3.9	3.9	0.0	12.1	12.1	8.2
Cincinnati OH	SJ Jct KY	112	0.0	31.0	31.0	0.0	28.0	28.0	-3.0
SJ Jct KY	Harriman TN	144	0.0	37.9	37.9	0.0	35.0	35.0	-2.9
Harriman TN	Citico Jct TN	74	0.0	26.6	26.6	0.0	28.1	28.1	1.5
Citico Jct TN	Ooltewah TN	12	0.0	37.0	37.0	0.0	44.0	44.0	7.0
Ooltewah TN	Cohutta GA	12	0.0	27.9	27.9	0.0	33.4	33.4	5.5
Cohutta GA	Austell GA	108	0.0	32.8	32.8	0.0	36.5	36.5	3.7
Austell GA	Howell GA	16	2.0	49.7	51.7	2.0	50.4	52.4	0.7
Howell GA	Spring GA	1	0.0	33.3	33.3	0.0	40.4	40.4	7.1
Spring GA	Scherer Coal GA	65	0.0	27.2	27.2	0.0	32.9	32.9	5.7
Scherer Coal GA	Macon Jct GA	20	0.0	21.9	21.9	0.0	27.4	27.4	5.5
Macon Jct GA	Brosnan Yd GA	2	0.0	37.0	37.0	0.0	40.0	40.0	3.0
C of G Jct GA	Langdale Yd GA	146	0.0	15.3	15.3	0.0	16.5	16.5	1.2
Langdale Yd GA	FEC Bowden Yd FL	118	0.0	10.8	10.8	0.0	12.4	12.4	1.6
Norris Yd AL	Austell GA	142	2.0	19.1	21.1	2.0	14.5	16.5	-4.5
Norris Yd AL	Birmingham 50St AL	5	2.0	37.4	39.4	2.0	34.3	36.3	-3.1
Birmingham 50St AL	Wilson AL	141	0.0	9.2	9.2	0.0	5.2	5.2	-4.1
Citico Jct TN	Chattanooga TN	2	0.0	63.2	63.2	0.0	55.7	55.7	-7.5
Wauhatchie TN	Norris Yard AL	130	0.0	7.0	7.0	0.0	12.2	12.2	5.2
Birmingham 50St AL	Burstal AL	16	2.0	27.8	29.8	2.0	25.8	27.8	-2.0

			Base Case			Post-Acquisition Case			
Station	Station	Miles 140	Psgr Trains Day	Frt Trains Day	Total Trains Day	Pagr Trains Day	Frt Trains Day	Total Trains Day	Change In Trains
Burstal AL	Meridian MS	140	2.0	16.2	18.2	2.0	18.2	18.2	-0.1
Meridian MS	Oliver Jct LA	194	2.0	9.1	11.1	2.0	13.5	15.5	4.4
Oliver Jct LA	KCS Shrewsbury LA	11	2.0	17.1	19.1	2.0	14.9	16.9	-2.2
Oliver Jct LA	Oliver Yd LA	2	0.0	15.0	15.0	0.0	18.1	18.1	3.1
Greensboro NC	Raleigh Yd NC	83	4.0	5.0	9.0	4.0	5.1	9.1	0.1
Raleigh Yd NC	Chocowinity NC	100	0.0	2.4	2.4	0.0	2.4	2.4	0.0
Chocowinity NC	New Bern NC	30	0.0	2.6	2.6	0.0	2.6	2.6	0.0
Chocowinity NC	Lee Creek NC	31	0.0	3.1	3.1	0.0	2.8	2.8	-0.3
Chocowinity NC	Plymouth NC	36	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Raleigh Jct NC	Goldsboro NC	50	4.0	1.6	5.6	4.0	1.6	5.6	0.0
Goldsboro NC	New Bern NC	58	0.0	0.9	0.9	0.0	0.9	0.9	0.0
New Bern NC	Morehead City NC	36	0.0	2.0	2.0	0.0	2.6	2.6	0.6
Greensboro NC	Gulf NC	51	0.0	1.9	1.9	0.0	1.4	1.4	-0.5
Gulf NC	Raleigh Jct NC	56	0.0	1.2	3.3	0.0	0.9	0.9	-2.4
Fayetteville NC	Fuquay-Varina NC	44	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Charlotte Jct NC	Columbia SC	109	0.0	9.4	9.4	0.0	4.5	4.5	-4.9
Columbia SC	Millen GA	135	0.0	6.0	6.0	0.0	5.2	5.2	-0.8
Salisbury NC	Asheville NC	142	0.0	6.6	6.6	0.0	5.4	5.4	-1.2
Asheville NC	Leadvale TN	74	0.0	8.4	8.4	0.0	7.6	7.6	-0.8
Asheville NC	Hayne Yd SC	69	0.0	1.5	1.5	0.0	2.4	2.4	0.9
Beaumont SC	Columbia SC	94	0.0	3.7	3.7	0.0	3.7	3.7	0.0
Andrews Yd SC	Charleston SC	120	0.0	5.5	5.5	0.0	4.7	4.7	-0.8
Murphy Jct NC	Waynesville NC	27	0.0	2.4	2.4	0.0	1.6	1.6	-0.8
Rock Hill SC	Kershaw SC	41	0.0	1.7	1.7	0.0	0.8	0.8	-0.9
Eastover SC	Kingville SC	5	0.0	2.2	2.2	0.0	1.6	1.6	-0.6
Hasskamp SC	Wateree Coal SC	18	0.0	2.0	2.0	0.0	1.4	1.4	-0.6
Anderson SC	Seneca SC	24	0.0	2.0	2.0	0.0	1.4	1.4	-0.6
Green GA	Wansley Jct GA	60	0.0	3.5	3.5	0.0	3.5	3.5	0.0
Spring GA	East Point GA	6	0.0	6.9	6.9	0.0	11.1	11.1	4.2
Athens GA	Lula GA	39	0.0	2.0	2.0	0.0	1.8	1.8	-0.2
Industry Yd GA	Edgewood GA	95	0.0	1.4	1.4	0.0	1.4	1.4	0.0
Krannert GA	Forrestville GA	12	0.0	4.0	4.0	0.0	2.0	2.0	-2.0

			Base Case			Post-Acquisition Case			
Station	Station	Miles	Pegr Trains Day	Frt Trains Day	T∵tal Trains Day	Psgr Trains Day	Frt Trains Day	Totai Trains Day	Change In Trains
Macon Jct GA	Millen GA	112	0.0	10.0	10.0	0.0	11.3	11.3	1.3
Millen GA	Savannah GA	70	0.0	7.4	7.4	0.0	9.0	9.0	1.6
Brosnan Yd GA	Brunswick GA	183	0.0	2.1	2.1	0.0	2.0	2.0	-0.1
Ft Valley GA	Albany GA	77	0.0	3.1	3.1	0.0	3.7	3.7	0.6
Albany GA	Dothan GA	85	0.0	3.2	3.2	0.0	1.4	1.4	-1.8
Valdosta GA	Occidental FL	42	0.0	5.4	5.4	0.0	3.8	3.8	-1.6
Madison GA	Mogul GA	68	0.0	2.6	2.6	0.0	1.8	1.8	-0.8
E Warrenton GA	Waynesboro GA	56	0.0	1.9	1.9	0.0	1.7	1.7	-0.2
Mahrt AL	Greenville GA	75	0.0	2.1	2.1	0.0	1.5	1.5	-0.6
Childersburg AL	Ft Valley GA	178	0.0	1.8	1.8	0.0	1.9	1.9	0.1
Ft Valley GA	Rutland Jct GA	22	0.0	5.3	5.3	0.0	4.4	4.4	-0.9
Walton VA	Bulls Gap TN	187	0.0	8.6	8.6	0.0	10.3	10.3	1.6
Bulls Gap TN	New Line TN	16	0.0	18.2	18.2	0.0	17.7	17.7	-0.6
New Line TN	Sevier Yd TN	32	0.0	21.9	21.9	0.0	21.1	21.1	-0.8
Sevier Yd TN	Cleveland TN	88	0.0	15.1	15.1	0.0	17.1	17.1	2.0
Cleveland TN	Ooltewah TN	14	0.0	9.2	9.2	0.0	12.6	12.6	3.4
Cleveland TN	Cohutta TN	15	0.0	6.3	6.3	0.0	4.6	4.6	-1.7
Bulis Gap TA	Leadvale TN	17	0.0	4.4	4.4	0.0	4.3	4.3	-0.1
New Line TN	Leadvale TN	11	0.0	4.9	4.9	0.0	5.7	5.7	0.8
Harriman TN	Sevier Yd TN	58	0.0	15.6	15.6	0.0	9.4	9.4	-6.2
Beverly TN	Burley KY	68	0.0	3.6	3.6	0.0	2.9	2.9	-0.7
Wauhatchie TN	Sheffield AL	154	0.0	10.2	10.2	0.0	10.8	10.8	0.6
Sheffield AL	Wilson AL	2	0.0	23.1	23.1	0.0	22.2	22.2	-0.9
Wilson AL	Memphis TN	144	0.0	14.8	14.8	0.0	16.5	16.5	1.7
Corinth MS	Fulton KY	123	0.0	3.0	3.0	0.0	2.4	2.4	-0.6
Bulls Gap TN	Frisco TN	41	0.0	18.0	18.0	0.0	12.1	12.1	-5.8
Frisco TN	Appalchia VA	46	0.0	12.2	12.2	0.0	9.3	9.3	-2.9
Frisco TN	St Paul VA	79	0.0	7.4	7.4	0.0	6.6	6.6	-0.8
Appalachia VA	Andover VA	1	0.0	10.2	10.2	0.0	5.4	5.4	-4.8
Appalachia VA	Norton VA	13	0.0	6.1	6.1	0.0	4.3	4.3	-1.8
Appalachia VA	Bundy	11	0.0	3.1	3.1	0.0	2.3	2.3	-0.8
Knoxville TN	Alcoa TN	15	0.0	1.7	1.7	0.0	1.7	1.7	0.0

			Base Case			Post-Acquisition Case			
Station	Station	Miles	Psgr Trains Day	Frt Trains Day	Total Trains Day	Psgr Trains Day	Frt Trains Day	Total Trains Day	Change In Trains
Frisco TN	Kingsport TN	6	0.0	4.0	4.0	0.0	4.0	4.0	0.0
Burstal AL	Selma AL	89	0.0	10.6	10.6	0.0	7.2	7.2	-3.4
Selma AL	Mobile AL	162	0.0	4.6	4.6	0.0	4.9	4.9	0.3
Wilton AL	Roberta AL	5	0.0	6.0	6.0	0.0	6.0	6.0	0.0
Roberta AL	Coosa Pines AL	33	0.0	2.8	2.8	0.0	2.8	2.8	0.0
Berry Coal AL	Parrish AL	23	0.0	2.3	2.3	0.0	2.3	2.3	0.0
Demopolis AL	Marion Jct AL	38	0.0	2.0	2.0	0.0	2.0	2.0	0.0
Maplesville AL	Montgomery AL	51	0.0	1.7	1.7	0.0	2.0	2.0	0.3
Clinton TN	Pruden TN	62	0.0	1.2	1.2	0.0	1.2	1.2	0.0
Louisville KY	SJ Jct KY	87	0.0	13.7	13.7	0.0	11.2	11.2	-2.6
Louisville KY	E. St. Louis IL	263	0.0	11.8	11.8	0.0	11.7	11.7	-0.1
Norfolk VA	Burkeville VA	138	0.0	20.4	20.4	0.0	21.5	21.5	1.1
Burkeville VA	Pamplin VA	37	0.0	11.4	11.4	0.0	11.6	11.6	0.2
Pamplin VA	Roanoke VA	85	0.0	18.3	18.3	0.0	18.9	18.9	0.6
Roanoke VA	Salem VA	7	0.0	34.3	34.3	0.0	40.4	40.4	6.0
Salem VA	Walton VA	33	0.0	28.2	28.2	0.0	32.1	32.1	3.9
Walton VA	Narrows VA	30	0.0	21.0	21.0	0.0	21.0	21.0	0.0
Narrows VA	Kellysville WV	11	0.0	34.1	34.1	0.0	35.4	35.4	1.3
Kellysville WV	Bluefield VA	22	0.0	31.9	31.9	0.0	31.6	31.6	-0.3
Abilene VA	Pamplin VA	16	0.0	3.9	3.9	0.0	3.9	3.9	0.0
Burkeville VA	Altavista VA	78	0.0	9.8	9.8	0.0	11.0	11.0	1.2
Altavista VA	Tinkers Crk Conn VA	41	0.0	10.0	10.0	0.0	8.4	8.4	-1.6
Tinkers Crk Conn VA	Salem VA	13	0.0	7.6	7.6	0.0	7.7	7.7	0.0
Salom V/A	Narrows VA	66	0.0	12.0	12.0	0.0	13.5	13.5	1.5
Burkeville VA	West Point VA	91	0.0	1.9	1.9	0.0	1.7	1.7	-0.1
Butersburg VA	Hopewell VA	9	0.0	2.4	2.4	0.0	2.0	2.0	-0.4
Petersburg VA	Petersburg VA	3	0.0	8.4	8.4	0.0	8.0	8.0	-0.4
Cuffolk VA	Edgerton VA	71	0.0	1.7	1.7	0.0	1.1	1.1	-0.6
Sulloik VA	Belews Crk Jc NC	99	0.0	7.0	7.0	0.0	7.9	7.9	0.9
Belows Crk lo NC	Winston Salem NC	23	0.0	5.6	5.6	0.0	3.7	3.7	-1.8
Mineten Salem NC	Greenshoro NC	26	0.0	4.7	4.7	0.0	2.7	2.7	-2.1
Palawa Creak la NC	Belews Crk CI NC	4	0.0	2.3	2.3	0.0	2.7	2.7	0.4

			Base Case			Post-Acquisition Case			
Station	Station	Miles	Psgr Trains Day	Frt Trains Day	Total Trains Day	Psgr Trains Day	Frt Trains	Total Trains	Change In
Kinney YD VA	Brookneal VA	32	0.0	17	17	0.0	24	Day	Trains
Vabrook VA	Mayo Jct NC	39	0.0	3.7	37	0.0	2.1	2.1	0.4
South Boston VA	Clover VA	16	0.0	0.6	0.6	0.0	4.4	4.4	0.6
Kimballton VA	Norcross VA	2	0.0	14	14	0.0	0.0	0.6	0.0
Elkton VA	Harrisonburg VA	20	0.0	16	1.4	0.0	2.9	2.9	1.5
Bluefield VA	lager WV	56	0.0	27.7	27.7	0.0	2.0	2.6	1.0
lager WV	Wharncliffe WV	16	0.0	35.1	35.1	0.0	20.1	28.7	1.0
Wharncliffe WV	Williamson WV	32	0.0	36.0	36.0	0.0	35.4	35.4	0.3
Williamson WV	Wolf Creek WV	18	0.0	33.7	33.7	0.0	30.0	36.6	0.7
Wolf Creek WV	Kenova OH	55	0.0	24.5	24.5	0.0	35.6	35.6	1.9
Kenova OH	Columbus OH	130	0.0	21.1	21.5	0.0	20.3	26.3	1.8
Columbus OH	Bucyrus OH	69	0.0	25.7	25.7	0.0	23.3	23.3	2.1
Bucyrus OH	Bellevue OH	34	0.0	26.0	26.0	0.0	31.0	31.6	5.9
Bellevue OH	Sandusky Dock OH	15	0.0	14	14	0.0	34.5	34.5	8.5
Bluefield VA	Cedar Bluff VA	34	0.0	67	67	0.0	5.9	5.9	4.5
Cedar Bluff VA	St Paul VA	42	0.0	11 1	111	0.0	0.9	6.9	0.2
St Paul VA	Norton VA	22	0.0	64	64	0.0	10.4	10.4	-0.6
Norton VA	Ramsey VA	5	0.0	35	3.5	0.0	5.4	5.4	-1.0
Weller VA	Richlands VA	46	0.0	41	41	0.0	2.9	2.9	-0.6
Weller WV	Devon WV	27	0.0	57	57	0.0	4.2	4.2	0.1
Cedar Bluff VA	lager WV	45	0.0	67	67	0.0	0.5	6.5	0.9
Kellysville WV	Elmore WV	47	0.0	37	37	0.0	<u> </u>	6.4	-0.3
Elmore WV	Deepwater WV	60	0.0	0.3	0.7	0.0	0.4	5.4	1.7
Elmore WV	Pinnacle Crk Jct WV	17	0.0	46	4.6	0.0	2.3	2.3	2.0
Pinnacle Crk Jct WV	Simon WV	23	0.0	17	17	0.0	- 4.9	4.9	0.3
Simon WV	Wharncliffe WV	23	0.0	3.8	3.8	0.0	2.0	2.0	0.3
Simon WV	Kopperston WV	21	0.0	19	10	0.0	4.1	4.1	0.3
Pinnacle Crk Jct WV	Pinnacle Crk WV		0.0	2.0	2.0	0.0	1.9	1.9	0.0
Mullens WV	Winding Gulf WV	29	2.0	0.4	2.5	0.0	2.9	2.9	0.0
Amigo WV	Stone Coal Jct WV	1 1	0.0	0.4	0.4	0.0	0.4	0.4	0.0
Nolf Creek WV	Pontiki KY	12	0.0	43	4.3	0.0	0.3	0.3	0.0
Pontiki KY	Pevler KY	10	0.0	4.5	4.5	0.0	4.5	4.5	0.1
			0.0	0.5	0.5	0.0	0.6	0.6	0.3

				Base Case Post-Acquisition Case				Case	
Station	Station	Miles	Pagr Trains Day	Frt Trains Day	Total Trains Day	Psgr Trains Day	Frt Traine Day	Total Trains Day	Change In Trains
Marrowbone WV	Naugatuck WV	3	0.0	3.5	3.5	0.0	3.7	3.7	0.2
Buffalo FW NY	Ashtabula OH	128	0.0	13.0	13.0	0.0	25.1	24.7	11.7
Ashtabula OH	Cleveland OH	50	0.0	13.0	13.0	0.0	35.2	35.2	22.2
Cleveland OH	Vermillion OH	37	0.0	13.5	13.5	0.0	37.8	37.8	24.3
Vermillion OH	Bellevue OH	26	0.0	15.6	15.6	0.0	31.8	31.8	16.2
Bellevue OH	Ft Wayne IN	120	0.0	23.9	23.9	0.0	28.5	28.5	4.6
Ft Wayne IN	Hammond IN	129	0.0	8.6	8.6	0.0	11.1	11.1	2.5
Hammond IN	Calumet IL	8	0.0	26.5	26.5	0.0	12.8	12.8	-13.7
Calumet IL	Landers IL	8	0.0	9.5	9.5	0.0	18.2	18.2	8.7
Hadley IN	Hobart IN	111	0.0	6.8	6.8	0.0	0.9	0.9	-6.0
Argos IN	Dillon IN	22	0.0	0.9	0.9	0.0	1.7	1.7	0.8
Buffalo NY	Black Rock NY	7	0.0	10.6	10.6	0.0	5.1	5.1	-5.5
Black Rock NY	St Thomas ON	131	0.0	1.8	1.8	0.0	2.5	2.5	0.7
St Thomas ON	West Detroit MI	94	0.0	2.0	2.0	0.0	2.4	2.4	0.3
Oakwood MI	Butler IN	107	0.0	15.2	15.2	0.0	17.3	17.3	2.1
Butler IN	Ft Wayne IN	28	0.0	13.6	13.6	0.0	22.4	22.4	8.8
Ft Wayne IN	Lafayette Jct IN	115	0.0	20.2	20.2	0.0	37.8	37.8	17.6
Lafavette Jct IN	Sidney IL	71	0.0	22.7	22.7	0.0	41.2	41.2	18.5
Sidney IL	Tolono IL	10	0.0	21.3	21.3	0.0	37.1	37.1	15.8
Tolono IL	Bement IL	18	0.0	21.6	21.6	0.0	35.4	35.4	13.8
Bement IL	Decatur IL	20	0.0	26.3	26.3	0.0	40.6	40.6	14.2
Decatur IL	Moberly MO	209	0.0	10.8	10.8	0.0	17.3	17.3	6.6
Moberly MO	CA Jct MO	94	0.0	18.6	18.6	0.0	25.9	25.9	7.3
CA Jct MO	N Kansas City MO	31	0.0	30.0	30.0	0.0	31.3	31.3	1.3
Feeder ON	Wellend ON	6	0.0	2.0	2.0	0.0	2.0	2.0	0.0
Sheffield Yard OH	South Lorain OH	4	0.0	3.6	3.6	0.0	4.6	4.6	1.0
Milan MI	Homestead OH	35	0.0	4.1	4.1	0.0	0.0	0.0	-4.1
Homestead OH	Oak Harbor OH	20	0.0	6.6	6.6	0.0	4.4	4.4	-2.2
Oak Harbor OH	Bellevue OH	27	0.0	7.7	7.7	0.0	27.2	27.2	19.5
Et Wayne IN	Muncie IN	64	0.0	19.6	19.6	0.0	15.0	15.0	-4.6
Muncie IN	livorvdale OH	106	0.0	20.6	20.6	0.0	20.5	20.5	-0.1
Ivorvdale OH	Cincinnati OH	6	0.0	31.3	31.3	0.0	36.0	36.0	4.7

				Base Case		Poe	t-Acquisition	Case	
Station	Station	Milee	Pagr Traine Day	Frt Traine Day	Total Trains Day	Pegr Trains Dav	Frt Traine Day	Total Traine Day	Change In Traine
Vera OH	Sardenia OH	57	0.0	3.4	3.4	0.0	0.0	0.0	-34
Sardenia OH	Norwood OH	43	0.0	3.4	3.4	0.0	1.7	17	-17
Norwood OH	Ivorydale OH	5	0.0	3.4	3.4	0.0	2.0	2.0	-14
Lafayette Jct IN	Alexandria IN	67	0.0	3.0	3.0	0.0	4.8	4.8	1.8
Alexandria IN	Muncie IN	16	0.0	2.6	2.6	0.0	11.8	11.8	92
IC 95St Chicago IL	Gibson City IL	99	0.0	2.0	2.0	0.0	5.2	52	32
Gibson City IL	Bement IL	41	0.0	5.4	5.4	0.0	7.0	7.0	16
Gibson City IL	E. Peoria IL	72	0.0	3.1	3.1	0.0	0.9	0.9	-22
Decatur IL	Granite City IL	106	0.0	9.8	9.8	0.0	15.3	15.3	54
Granite City IL	TRRA Madison IL	6	0.0	18.9	18.9	0.0	23.9	23.9	50
TRRA Madison IL	Luther MO	6	0.0	20.8	20.8	0.0	21.6	21.6	0.8
Luther MO	Moberly MO	141	0.0	10.2	10.2	0.0	11.4	11.4	1.2
Coffeen Coal IL	CNW Madison IL	53	0.0	0.6	0.6	0.0	0.7	0.7	0.1

			BASE CASE	POST CONSOLIDATION	
Station	Station	Miles	TOT MGT	TOT MGT	PCT CHG MGT
Oak Island NJ	Aldene NJ	8	42.4	26.9	-37
Aldene NJ	Manville NJ	20	41.6	25.8	-38
Manville NJ	Bethlehem PA	52	30.2	24.1	-20
Bethlehem PA	Allentown PA	3	24.8	22.8	-8
Allentown PA	Burn PA	3	49.7	56.0	13
Bethlehem PA	Burn PA	5	15.1	11.7	-22
Burn PA	Rdg Belt Jct PA	37	65.7	67.8	3
Rdg Belt Jct PA	WM Jct PA	4	58.2	55.7	-4
WM Jct PA	Rutherford PA	45	86.8	91.0	5
Rutherford PA	Harrisburg PA	6	85.8	89.6	4
Harrisburg PA	Marysville PA	9	85.2	100.6	18
Oak Island NJ	Greenville NJ	4	22.9	10.1	-56
Oak Island NJ	E Rail TV NJ	6	15.1	18.4	22
E Rail TV NJ	Port Reading NJ	8	10.8	8.7	-20
Port Reading NJ	South Amboy NJ	6	3.2	1.6	-49
Bound Brook NJ	Port Reading NJ	15	7.5	7.6	1
Phillipsburg NJ	Dover NJ	47	0.6	0.5	-6
Hazelton PA	Lehighton PA	29	0.4	0.4	0
Lehighton PA	Allentown PA	29	8.2	4.1	-50
Reading PA	Reading Belt Jct. PA	2	8.5	12.4	46
West Falls PA	Abrams PA	14	36.9	28.0	-24
Abrams PA	WM Jct. PA	39	50.8	44.1	-13
Oak Island NJ	Morrisville PA	49	43.6	44.8	3
Morrisville PA	Abrams PA	32	11.3	12.0	77
Earnest PA	Coatsville PA	29	1.4	1.7	21
West Falls PA	Wayne Jct PA	4	14.3	2.4	-83
Zoo PA	Arsenal PA	2	7.1	14.7	107
Arsenal PA	Greenwich PA	3	7.1	6.5	-8
Eastwick PA	Marcus Hook PA	12	7.0	11.7	66
CSX Park Jct PA	Frankfrd Jct PA	5	12.9	8.3	-36
Frankfrd Jct PA	Pavonia NJ	4	18.6	14.2	-24

		and the second seconds	BASE CASE	POST CONSOLIDATION	
Station	Station	Miles	TOT MGT	TOT MGT	PCT CHG MGT
Pavonia NJ	Woodbury NJ	9	9.0	5.3	-42
Woodbury NJ	Paulsboro NJ	5	5.7	3.2	-44
Paulsboro NJ	Carneys Pnt NJ	16	2.2	1.2	-45
Woodbury NJ	Millville NJ	30	1.5	0.9	-40
Bulson St NJ	Winslow Jct NJ	23	1.7	0.7	-59
Winslow Jct NJ	Palermo Coal NJ	34	1.1	0.4	-64
Pavonia NJ	Burlington NJ	15	1.0	0.6	-40
Morrisville PA	Frankfrd Jct PA	23	29.1	33.1	14
Frankfrd Jct PA	Zoo PA	6	33.6	37.3	11
Arsenal PA	Marcus Hook PA	15	21.2	21.2	0
Marcus Hook PA	Perryville MD	43	22.4	26.2	17
Perryville MD	Bay View MD	32	47.8	44.0	-8
Bayview MD	Washington DC	44	25.0	30.1	21
Bell DE	Edgemoor DE	1	5.1	13.5	164
Newark DE	Harrington DE	56	6.3	7.0	11
Harrington DE	Pocomoke DE	64	1.7	1.6	-3
Harrington DE	Indian River Coal DE	43	2.7	2.9	7
Wayne NJ	Croxton NJ	19	0.8	0.9	13
Croxton NJ	Suffern NY	28	18.9	26.8	42
Suffern NY	CampbellHall NY	35	8.2	16.1	96
Campbell Hall NY	Port Jervis NY	30	14.4	22.4	56
Port Jervis NY	Binghamton NY	126	11.5	19.4	69
Binghamton NY	Waverly NY	42	19.1	28.0	46
Waverly NY	Corning NY	36	22.5	31.1	38
Corning NY	Buffalo NY	128	22.8	29.0	27
Waverly NY	Mehoopany PA	59	0.9	0.9	-1
Sayre PA	Ludlowvie Coal NY	49	2.4	2.2	-6
Corning NY	Geneva NY	57	0.2	1.2	663
Marysville PA	Enola PA	5	58.1	46.9	-19
Enola Pa	Wago YorkHaven PA	18	48.0	34.8	-27
Wago YorkHaven PA	Perryville PA	58	40.3	31.5	-22

			BASE CASE	POST CONSOLIDATION	
Station	Station	Miles	TOT MGT	TO) MGT	PCT CHG MGT
Wago YorkHaven PA	York PA	10	2.0	1.9	-5
Cola PA	Lancaster PA	12	3.5	3.4	-3
Harrisburg PA	Shocks PA	22	2.8	6.8	148
Harrisburg PA	Hagerstown PA	74	21.7	36.9	70
Rockville PA	Watsontown PA	64	11.4	15.3	34
Watsontown PA	Montgomery PA	7	14.9	15.5	4
Montgomery PA	Linden PA North	22	4.4	11.0	151
iviontgomery PA	Linden PA South	22	10.6	4.6	-57
Linden PA	Keating PA	59	15.7	15.8	1
Keating PA	Ebenezer Jct NY	149	7.7	7.8	0
Ebenezer Jct NY	Buffalo NY	5	0.0	7.8	n/a
Watsontown PA	Straw Rdg CL PA	13	5.8	5.7	-2
Marysville PA	Pitcairn PA	227	101.3	88.2	-13
Pitcairn PA	Jacks Run PA	18	70.2	70.7	1
Jacks Run PA	Conway East PA	16	115.5	100.7	-13
Conpitt Jct PA	Avonmre Coal PA	28	2.9	2.9	0
Avonmre Coal PA	Etna PA	44	1.5	1.7	14
Etna PA	Federal St PA	6	3.1	3.0	-3
Pitcairn PA	Thomson PA	3	29.0	16.5	-43
Thomson PA	Jacks Run PA	16	41.0	26.1	-36
Thomson PA	W Brownsvile PA	42	65.0	33.6	-48
W Brownsvile PA	Blacksvle Coal WV	54	31.4	15.8	-50
Blacksvle Coal WV	Fed 2 Coal WV	6	7.0	2.4	-66
Emerald Coal PA	Bailey MineCL PA	15	27.4	16.4	-40
W Brownsvile PA	Loveridge Coal WV	31	11.6	6.4	-45
Conway East PA	Rochester PA	5	130.3	114.5	-12
Rochester PA	Ashtabula OH	98	31.3	41.6	33
Ashtabula OH	Ashtabula Harbor OH	2	15.7	11.6	-26
Hubbard OH	Oil City PA	80	2.4	2.1	-13
Youngstown OH	Alliance OH	42	3.1	2.8	-10
Latimer OH	Warren OH	11	2.5	1.5	-40

			BASE CASE	POST CONSOLIDATION	
Station	Station	Miles	TOT MGT	TOT MGT	PCT CHG MGT
Rochester PA	Yellow Creek OH	26	14.7	13.6	-7
Yellow Creek OH	Mingo Jct OH	20	18.5	18.9	2
Mingo Jct OH	Weirton OH	3	11.5	11.5	0
Mingo Jct OH	MartinsFerry OH	18	2.7	2.7	0
Yellow Creek OH	Alliance OH	41	4.7	6.1	30
Rochester PA	Alliance OH	57	82.3	57.2	-30
Alliance OH	Crestline OH	106	36.1	15.9	-56
Columbus OH	Charleston WV	185	9.5	8.7	-9
Charleston WV	Dickinson WV	14	7.6	7.2	-5
Dickinson WV	Peters Jct WV	41	4.5	7.2	59
Deepwater WV	Fola Mine WV	17	1.3	5.6	331
Scioto OH	Alton OH	6	5.3	8.6	62
Alton OH	Ivorydale OH	109	26.1	35.6	36
Alliance OH	White OH	46	57.5	51.7	-10
White OH	Cleveland OH	11	25.9	49.9	93
Kinsman OH	North Randall OH	9	0.3	0.3	0
Cleveland OH	Shortline Jct OH	7	0.7	8.4	1100
Cleveland OH	Vermillion OH	43	100.8	43.5	-57
Vermillion OH	Oak Harbor OH	43	100.3	72.2	-28
Oak Harbor OH	Airline OH	24	100.9	109.5	9
Airline OH	River Rouge MI	50	22.0	24.0	9
River Rouge MI	W. Detroit MI	5	32.8	32.3	-2
W. Detroit MI	North Yd Ml	6	10.5	6.9	-34
North Yard MI	Sterling MI	14	4.7	2.5	-47
Ecorse Jct MI	Brownstov/n MI	4	1.7	1.2	-29
West Detroit MI	Jackson MI	74	4.8	19.8	315
Jackson MI	Kalamazoo MI	67	7.ò	20.4	163
Kalamazoo MI	Elkhart IN	55	11.0	8.6	-22
Jackson MI	Lansing MI	37	0.9	1.2	33
Kalamazoo MI	Grand Rapids MI	49	2.2	2.8	27
Airline OH	Butler IN	68	108.1	81.8	-24

Constrat, Excellent Constration	The state of the second state of the second		BASE CASE	POST CONSOLIDATION	
Station	Station	Miles	TOT MGT	TOT MGT	PCT CHG MGT
Butler IN	Elkhart IN	63	111.3	83.8	-25
Goshen IN	Alexandria IN	99	13.5	19.9	47
Alexandria IN	Anderson IN	13	12.0	0.0	-100
Elkhart IN	Porter IN	61	109.0	102.9	-6
Porter IN	Control Pt 501 IN	20	129.2	139.1	8
Control Pt 501 IN	Indiana Hbr IN	1	85.9	121.8	42
Indiana Hbr IN	South Chgo IL	8	81.3	105.6	30
South Chao IL	Ashland Ave IL	9	61.8	30.8	-50
Colehour IL	Calumet Park IL	5	3.6	5.9	64
Indiana Harbor IN	Kankakee IL	57	12.3	7.6	-38
Kankakee IL	Streator IL	49	8.3	9.2	11
Streator IL	Hennepin IL	32	2.9	2.7	-7
Schneider IL	Wheatfld Coal IN	21	6.9	6.8	-1

and the second		A A Part Instant a second second	Base Case	Post Acquisition	No Berne Luber Selferregen
Station	Station	Miles	Total MGT	Total MGT	% Change MGT
Alexandria VA	Manassas VA	22	12.9	15.4	20%
Manassas VA	Montview VA	142	20.3	23.4	15%
Montview VA	Altavista VA	21	23.0	30.5	33%
Altavista VA	Greensboro NC	86	28.1	29.0	3%
Greensboro NC	Linwood NC	41	32.4	38.2	18%
Linwood NC	Salisbury NC	9	46.5	47.3	2%
Salisbury NC	Charlotte NC	50	36.7	34.6	-6%
Charlotte NC	Beaumont SC	70	25.5	23.0	-10%
Beaumont SC	Hayne Yd SC	2	27.1	30.0	11%
Hayne Yd SC	Howell GA	181	25.6	29.7	16%
Riverton Jct VA	Manassas VA	51	13.7	10.6	-23%
Hagerstown MD	Riverton Jct VA	59	18.8	36.8	96%
Riverton Jct VA	Roanoke VA	181	8.8	28.9	228%
Cincinnati OH	SJ Jct KY	112	53.7	55.9	4%
SJ Jct KY	Harriman TN	144	71.5	71.2	0%
Harriman TN	Citico Jct TN	74	51.6	53.6	4%
Citico Jct TN	Ooltewah TN	12	69.4	82.1	18%
Ooltewah TN	Cohutta GA	12	52.2	59.0	13%
Cohutta GA	Austell GA	108	66.4	71.0	7%
Austell GA	Howell GA	16	97.7	101.4	4%
Howell GA	Spring GA	1	67.5	81.4	21%
Spring GA	Scherer Coal GA	65	60.8	67.7	11%
Scherer Coal GA	Macon Jct GA	20	42.7	50.6	18%
Macon Jct GA	Brosnan Yd GA	2	72.6	75.0	3%
C of G Jct GA	Langdale Yd GA	146	24.2	27.1	12%
Langdale Yd GA	FEC Bowden Yd FL	118	16.7	18.8	13%
Norris Yd AL	Austell GA	142	37.7	33.6	-11%
Norris Yd AL	Birmingham 50St AL	5	74.5	74.6	0%
Birmingham 50St AL	Wilson AL	141	17.8	14.7	-17%
Citico Jct TN	Chattanooga TN	2	116.6	111.6	-4%
Wauhatchie TN	Norris Yard AL	130	21.9	26.0	19%
Birmingham 50St AL	Burstal AL	16	52.1	54.7	5%
Burstal AL	Meridian MS	140	31.7	36.0	13%
Meridian MS	Oliver Jct LA	194	21.0	22.0	5%

		include and a second second second	Base Case	Post Acquisition	
		and the second second			%
			Total	Total	Change
Station	Station	Miles	MGT	MGT	MGT
Oliver Jct LA	KCS Shrewsbury LA	11	29.6	29.7	0%
Oliver Jct LA	Oliver Yd LA	2	28.6	30.6	7%
Greensboro NC	Raleigh Yd NC	83	10.3	10.2	-1%
Raleigh Yd NC	Chocowinity NC	100	6.9	6.4	-7%
Chocowinity NC	New Bern NC	30	2.5	2.3	-8%
Chocowinity NC	Lee Creek NC	31	5.1	5.7	12%
Chocowinity NC	Plymouth NC	36	3.0	3.0	0%
Raleigh Jct NC	Goldsboro NC	50	2.2	2.2	0%
Goldsboro NC	New Bern NC	58	0.1	0.1	0%
New Bern NC	Morehead City NC	36	2.3	2.5	9%
Greensboro NC	Gulf NC	51	2.9	2.2	-25%
Gulf NC	Raleigh Jct NC	56	0.4	0.7	80%
Favetteville NC	Fuquay-Varina NC	44	0.8	0.8	0%
Charlotte Jct NC	Columbia SC	109	14.5	9.7	-33%
Columbia SC	Millen GA	135	11.9	8.3	-30%
Salisbury NC	Asheville NC	142	16.7	14.8	-11%
Asheville NC	Leadvale TN	74	23.2	22.1	-5%
Asheville NC	Hayne Yd SC	69	3.3	4.2	26%
Beaumont SC	Columbia SC	94	7.5	7.5	0%
Andrews Yd SC	Charleston SC	120	8.0	8.7	9%
Murphy Jct NC	Waynesville NC	27	3.2	2.7	-16%
Rock Hill SC	Kershaw SC	41	1.8	1.0	-47%
Eastover SC	Kingville SC	5	2.5	2.4	-4%
Hasskamp SC	Wateree Coal SC	18	1.5	1.5	0%
Anderson SC	Seneca SC	24	1.9	2.4	26%
Green GA	Wansley Jct GA	60	6.7	6.5	-4%
Spring GA	East Point GA	6	7.1	13.2	86%
Athens GA	Lula GA	39	1.5	0.9	-38%
Industry Yd GA	Edgewood GA	95	0.9	1.1	20%
Krannert GA	Forrestville GA	12	10.2	4.0	-61%
Macon Jct GA	Millen GA	112	22.9	20.4	-11%
Millen GA	Savannah GA	70	14.2	14.4	1%
Brosnan Yd GA	Brunswick GA	183	3.1	3.1	0%
Ft Valley GA	Albany GA	77	6.5	6.9	6%

			Base Case	Post Acquisition	
Station	Station	Miles	Total MGT	Total MGT	% Change MGT
Albany GA	Dothan GA	85	3.1	3.1	1%
Valdosta GA	Occidental FL	42	6.7	6.6	-1%
Madison GA	Mogul GA	68	2.8	2.3	-19%
E Warrenton GA	Waynesboro GA	56	1.6	1.6	0%
Mahrt AL	Greenville GA	75	1.9	1.8	-5%
Childersburg AL	Ft Valley GA	178	2.2	2.3	2%
Ft Valley GA	Rutland Jct GA	22	9.8	10.0	2%
Walton VA	Bulls Gap TN	187	12.7	23.2	83%
Bulls Gap TN	New Line TN	16	39.3	49.3	25%
New Line TN	Sevier Yd TN	32	48.1	60.0	25%
Sevier Yd TN	Cleveland TN	88	35.0	44.7	28%
Cleveland TN	Ooltewah TN	14	17.1	28.8	68%
Cleveland TN	Cohutta TN	15	17.7	15.3	-14%
Bulls Gap TN	Leadvale TN	17	12.3	12.2	-1%
New Line TN	Leadvale TN	11	11.4	10.7	-6%
Harriman TN	Sevier Yd TN	58	26.0	23.1	-11%
Beverly TN	Burley KY	68	5.6	5.2	-6%
Wauhatchie TN	Sheffield AL	154	24.7	29.4	19%
Sheffield AL	Wilson AL	2	51.0	51.8	2%
Wilson AL	Memphis TN	144	33.4	36.7	10%
Corinth MS	Fulton KY	123	3.0	4.0	31%
Bulls Gap TN	Frisco TN	41	40.0	38.8	-3%
Frisco TN	Appalchia VA	46	23.8	21.7	-9%
Frisco TN	St Paul VA	79	22.5	23.8	6%
Appalachia VA	Andover VA	1	17.2	13.3	-23%
Appalachia VA	Norton VA	13	8.8	8.9	1%
Appalachia VA	Bundy	11	5.5	5.4	-2%
Knoxville TN	Alcoa TN	15	0.9	1.0	11%
Frisco TN	Kingsport TN	6	4.5	6.2	38%
Burstal AL	Selma AL	89	17.9	15.1	-16%
Selma AL	Mobile AL	162	8.2	8.5	4%
Wilton AL	Roberta AL	5	7.7	3.0	4%
Roberta AL	Coosa Pines AL	33	5.1	5.4	5%
Berry Coal AL	Parrish AL	23	2.9	2.9	0%

STB 33388 6-23-97 A 180274V6A 9/9 FD

	different states and the second states and		Base Case	Post Acquisition	
Station	Station	Miles	Total MGT	Total MGT	% Change MGT
Demopolis AL	Marion Jct AL	38	1.5	1.5	0%
Maplesville AL	Montgomery AL	51	1.4	1.6	14%
Clinton TN	Pruden TN	62	1.2	1.1	-6%
Louisville KY	SJ Jct KY	87	24.8	23.3	-6'/6
Louisville KY	E St Louis IL	263	21.0	19.9	-5%
Nerfolk VA	Burkeville VA	138	65.1	65.2	0%
Burkeville VA	Pamplin VA	37	18.4	18.3	-1%
Pamplin VA	Roanoke VA	85	28.3	32.1	14%
Roanoke VA	Salem VA	7	70.8	84.9	20%
Salem VA	Walton VA	33	52.1	56.9	9%
Walton VA	Narrows VA	30	38.3	32.6	-15%
Narrows VA	Kellysville WV	11	104.6	108.9	4%
Kellysville WV	Bluefield VA	22	96.8	96.3	0%
Abilene VA	Pamplin VA	16	6.5	5.4	-17%
Burkeville VA	Altavista VA	78	50.4	52.2	4%
Altavista VA	Tinkers Crk Conn VA	41	59.3	55.8	-6%
Tinkers Crk Conn VA	Salem VA	13	47.3	50.9	8%
Salem VA	Narro vs VA	66	64.0	74.5	16%
Burkeville VA	West Point VA	91	2.4	2.6	8%
Petersburg VA	Hopewell VA	9	3.2	3.0	-6%
Poe ML VA	Petersburg VA	3	16.4	12.3	-25%
Suffolk VA	Edgerton VA	71	3.1	3.1	-2%
S Roanoke VA	Belews Crk Jc NC	99	17.8	17.8	0%
Belews Crk Jc NC	Winston Salem NC	23	12.7	8.3	-35%
Winston Salem NC	Greensboro NC	26	6.4	5.6	-13%
Belews Creek Jc NC	Belews Crk CI NC	4	7.2	8.2	14%
Brookneal VA	Kinney YD VA	32	2.0	2.5	25%
Vabrook VA	Mayo Jct NC	39	10.6	12.8	20%
South Boston VA	Clover VA	16	1.3	1.7	31%
Kimballton VA	Norcross VA	2	1.2	1.8	50%
Elkton VA	Harrisonburg VA	20	2.6	2.8	8%
Bluefield VA	lage: WV	56	83.5	84.1	1%
lager WV	Wharr.cliffe WV	16	101.1	101.7	1%
Wharncliffe WV	Williamson WV	32	99.7	100 2	1%

			Base Case	Post Acquisition	
Station	Station	Mil 35	Total MGT	Total MGT	% Change MGT
Williamson WV	Wolf Creek WV	18	93.0	93.7	1%
Wolf Creek WV	Kenova OH	55	67.6	67.0	-1%
Kenova OH	Columbus OH	130	52.7	53.2	1%
Columbus OH	Bucyrus OH	69	57.7	75.5	31%
Bucyrus OH	Bellevue OH	34	58.3	81.2	39%
Bellevue OH	Sandusky Dock OH	15	5.9	10.4	76%
Bluefield VA	Cedar Bluff VA	34	15.8	16.8	6%
Ceder Bluff VA	St Paul VA	42	27.6	28.4	3%
S' Paul VA	Norton VA	22	17.3	18.5	7%
Norton VA	Ramsey VA	5	7.8	7.6	-3%
Veller VA	Richlands VA	46	7.9	8.0	0%
V.'eller WV	Devon WV	27	22.3	23.1	4%
Cedar Bluff VA	lager WV	45	18.9	18.8	0%
Kel ysville WV	Elmore WV	47	8.7	13.7	57%
Elmore WV	Deepwater WV	60	0.5	6.3	1142%
Elmore WV	Pinnacle Crk Jct WV	17	12.9	13.9	8%
Pinnacle Crk Jct WV	Simon WV	23	4.1	4.9	20%
Simon WV	Wharncliffe WV	23	12.1	13.2	9%
Simon WV	Kopperston WV	21	5.4	5.6	4%
Pinnacle Crk Jct WV	Pinnacle Crk WV	4	8.8	8.9	1%
Mullens WV	Winding Gulf WV	29	0.6	0.9	52%
Amigo WV	Stone Coal Jct WV	1	0.3	0.3	0%
Wolf Creek WV	Pontiki KY	12	12.8	13.6	6%
Pontiki KY	Pevier KY	10	0.3	0.6	100%
Marrowbone WV	Naugatuck WV	3	9.2	11.0	19%
Buffalo NY	Ashtabula OH	128	19.6	42.7	117%
Ashtabula OH	Cleveland OH	50	19.9	69.7	251%
Cleveland OH	Vermillion OH	37	25.5	61.8	143%
Vermillion OH	Bellevue OH	26	30.6	54.7	79%
Bellevue OH	Ft Wayne IN	120	40.6	43.2	6%
Ft Wayne IN	Hammond IN	129	16.1	16.0	0%
Hammond IN	Calumet IL	8	40.7	14.2	-65%
Calumet IL	Landers IL	8	12.2	36.2	197%
Hadley IN	Hobart IN	111	9.3	2.3	-75%
NS Line Segments - Base Case and Post-Acquisition Case Estimated Changes in Millions of Gross Tons (MGT)

			Base Case	Post Acquisition	
Station	Station	Miles	Total MGT	Total MGT	% Change MGT
Argos IN	Dillon IN	22	0.6	1.1	77%
Buffalo NY	Black Rock NY	7	14.3	6.0	-58%
Black Rock NY	St Thomas ON	131	1.6	2.5	57%
St Thomas ON	West Detroit MI	94	2.7	3.6	33%
Oakwood MI	Butler IN	107	18.3	22.5	23%
Butler IN	Ft Wayne IN	28	16.8	25.0	49%
Ft Wayne IN	Lafayette Jct IN	115	28.6	54.6	91%
Lafayette Jct IN	Sidney IL	71	32.1	59.5	85%
Sidney IL	Tolono IL	10	30.8	46.4	51%
Tolono IL	Bement IL	18	30.6	44.0	44%
Bement IL	Decatur IL	20	37.7	59.1	57%
Decatur IL	Moberly MO	209	15.9	28.1	77%
Moberly MO	CA Jct MO	94	27.7	39.4	42%
CA Jct MO	N Kansas City MO	31	50.8	56.3	11%
Feeder ON	Wellend ON	6	1.3	1.3	0%
Sheffield Yard OH	South Lorain OH	4	2.6	3.3	27%
Milan MI	Homestead OH	35	6.2	0.0	-100%
Homestead OH	Oak Harbor OH	20	16.6	9.3	-44%
Oak Harbor OH	Bellevue OH	27	17.2	49.0	184%
Ft Wayne IN	Muncie IN	64	28.6	21.5	-25%
Muncie IN	Ivorydale OH	106	34.4	40.9	19%
Ivorydale OH	Cincinnati OH	6	49.6	65.0	31%
Vera OH	Sardenia OH	57	5.7	0.0	-100%
Sardenia OH	No wood OH	43	5.7	0.3	-95%
Norwood OH	Ivorydale OH	5	5.7	1.6	-72%
Lafayette Jct IN	Aiexandria IN	67	5.3	7.8	48%
Alexandria IN	Muncie IN	16	5.6	26.3	370%
IC 95St Chicago IL	Gibson City IL.	99	5.6	13.8	146%
Gibson City IL	Bement IL	41	11.0	16.4	49%
Gibson City IL	E. Peoria II.	72	4.0	2.6	-35%
Decatur IL	Granite City IL	106	18.0	21.1	17%
Granite City IL	TRRA Madison IL	6	18.6	31.8	71%
TRRA Madison IL	Luther MO	6	20.1	25.1	25%
Luther MO	Moberly MO	141	13.8	14.4	4%

NS Line Segments - Base Case and Post-Acquisition Case Estimated Changes in Millions of Gross Tons (MGT)

	and the second second second second second		Base Case	Post Acquisition	
					%
			Total	Total	Change
Station	Station	Miles	MGT	MGT	MGT
Coffeen Coal IL	CNW Madison IL	53	1.9	1.9	3%

Figure D.6-4

CERTIFICATE OF SERVICE

We hereby certify that, in compliance with 49 C.F.R. § 1105.7(b) and at the direction of the Surface Transportation Board's Section of Environmental Analysis (SEA), a copy of Volume 6, Environmental Report, in Finance Docket No. 33388, will be served at the time the Application is filed, by first class mail, properly addressed with postage prepaid, or by more expeditious form of delivery, upon all parties of record and all persons whom SEA has identified and requested that Applicants serve.

Dated at Washington, D.C. this 12th day of June 1997.

Tary

Mary Gabrielle Sprague One of the attorneys for Applicant CSX

Andrew R. Plump One of the attorneys for Applicant NS

RAILROAD CONTROL APPLICATION

VOLUME 6B OF 8

ENVIRONMENTAL REPORT PART 2 — OPERATIONAL IMPACTS RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITIES

JAMES C. BISHOP, JR. WILLIAM C. WOOLDRIDGE J. GARY LANE JAMES L. HOWE, III **ROBERT J. COONEY** A. GAYLE JORDAN GEORGE A. ASPATORE JAMES R. PASCHALL **ROGER A. PETERSEN** GREG E. SUMMY JAMES A. SQUIRES Norfolk Southern Corporation Three Commercial Place Norfolk, VA 23510-2191 (757) 629-2838

RICHARD A. ALLEN JAMES A. CALDERWOOD ANDREW R. PLUMP JOHN V. EDWARDS Zuckert, Scoutt & Rasenberger, L.L.P. 888 Seventeenth Street, N.W. Suite 600 Washington, DC 20006-3939 (202) 298-8660

JOHN M. NANNES SCOT B. HUTCHINS Skadden, Arps, Slate, Meagher & Flom LLP 1440 New York Avenue, N.W. Washington, DC 20005-2111 (202) 371-7400

Counsel for Norfolk Southern Corporation and Norfolk Southern Railway Company

MARK G. ARON PETER J. SHUDTZ **ELLEN M. FITZSIMMONS CSX** Corporation One James Center 901 East Cary Street Richmond, VA 23129 (804) 782-1400

P. MICHAEL GIFTOS DOUGLAS R. MAXWELL PAUL R. HITCHCOCK NICHOLAS S. YOVANOVIC FRED R. BIRKHOLZ JOHN W. HUMES, JR. R. LYLE KEY, JR. CHARLES M. ROSENBERGER PAMELA E. SAVAGE JAMES D. TOMOLA CSX Transportation, Inc. 500 Water Street Jacksonville, FL 32202 (904) 359-3100

DENNIS G. LYONS JEFFREY A. BURT **RICHARD L. F.OSEN** MARY GABRIELLE SPRAGUE PAUL T. DENIS DREW A. HARKER SUSAN T. MORITA SUSAN B. CASSIDY SHARON L. TAYLOR JEFFREY R. DENMAN JODI B. DANIS CHRIS P. DATZ AMANDA J. PARACUELLOS Arnold & Porter 555 12th Street, N.W. Washington, DC 20004-1202 (202) 942-5000

SAMUEL M. SIPE, JR. BETTY JO CHRISTIAN TIMOTHY M. WALSH DAVID H. COBURN CAROLYN D. CLAYTON Steptoe & Johnson LLP 1330 Connecticut Avenue, N.W. Washington, DC 20036-1795 (202) 429-3000

Counsel for CSX Corporation and CSX Transportation, Inc.

TIMOTHY T. O'TOOLE **CONSTANCE L. ABRAMS Consolidated Rail Corporation Two Commerce Square** 2001 Market Street Philadelphia, PA 19101 (215) 209-4000

PAUL A. CUNNINGHAM Harkins Cunningham 1300 Nineteenth Street, N.W. Suite 600 Washington, D.C. 20036 (202) 973-7600

Counsel for Conrail Inc. and **Consolidated Rail Corporation**

JUN 23 1997

SURFACE

TRANSPORTATION BOARD

June 1997

ENVIRONMENTAL REPORT

CSX CORPORATION AND CSX TRANSPORTATION, INC., NORFOLK SOUTHERN CORPORATION AND NORFOLK COUTHERN RAILWAY COMPANY -CONTROL AND CPERATING LEASES/AGREEMENTS-CONRAIL INC. AND CONSOLIDATED RAIL CORPORATION

OPERATIONAL IMPACTS RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITIES

PART 2 of 4

Prepared by:

Dames & Moore One Continental Towers 1701 Golf Road, Suite 1000 Rolling Meadows, Illinois 60008

for CSX Corporation and CSX Transportation Corporation Burns & McDonnell 9400 Ward Parkway Kansas City, Missouri 64114

for Norfolk Southern Corporation and Norfolk Southern Railway Company CSX Corporation and CSX Transportation, Inc. (CSX), and Norfolk Southern Corporation and Norfolk Southern Railway Company (NS), are filing an application with the Surface Transportation Board (STB) seeking authority to control Conrail Inc. and Consolidated Rail Corporation and to allocate the assets of Conrail between them.

This Environmental Report describes the proposed action and expected environmental effects. This Environmental Report has been prepared by CSX and NS to assist the STB in its review of the potential environmental effects of the proposed action. The STB has announced its intention to prepare an Environmental Impact Statement on the proposed action. The STB will publish a notice in the Federal Register soliciting comments on the scope of the environmental review process.

We are providing this Environmental Report so that you may review the information that will form the basis for the STB's independent environmental analysis of this proceeding. If you believe that any of the information is misleading or incorrect or that any pertinent information is missing, or if you have any comments related to environmental matters, you may file comments with the STB. Anyone wishing to file comments on environmental matters should submit an original and ten (10) copies of the comments to:

Office of the Secretary Case Control Unit Finance Docket No. 33388 Surface Transportation Board 1925 K Street, N.W. Washington, DC 20423-0001

Attention: Elaine K. Kaiser Chief, Section of Environmental Analysis Environmental Filing

Questions and comments on environmental matters may also be directed to the STB's Section of Environmental Analysis at its toll-free number: **1-888-869-1997**.

Your comments will be considered by the STB in evaluating the environmental impacts of the proposed action.

GUIDE TO THE ENVIRONMENTAL REPORT (published in three volumes):

The Environmental Report includes four parts:

Volume 6A

Part 1: Overview and Description of the Proposed Acquisition

This Part provides an overvie w of the proposed Acquisition, a summary of the potential environmental impacts and descriptions of analytical methodologies. A Glossary and List of Abbreviations and Acronyms are included in the front of Part 1.

Volume 6B

Part 2: Operational Impacts - Rail Line Segments, Rail Yards and Intermodal Facilities

This Part provides detailed analysis of the potential environmental impacts related to proposed changes in traffic and other Acquisition-related activities on specific rail line segments, at rail yards, and at intermodal/Triple Crown Services facilities.

Volume 6C

Part 3: Proposed Abandonments

This Part provides detailed analyses of each proposed abandonment, proposed mitigation of potential environmental impacts associated with the abandonments and descriptions of analytical methodologies.

Part 4: Proposed Construction Projects

This Part provides detailed analyses of each proposed construction project (connections and other projects requiring newly acquired rights-of-way or property), proposed mitigation of the potential environmental impacts related to each project and descriptions of analytical methodologies.

VOLUME 6B MASTER TABLE OF CONTENTS

PART 2 OPERATIONAL IMPACTS RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITIES

ABLE OF CONTENTS 1
.0 INTRODUCTION
.0 ALABAMA
.0 DELAWARE
.0 FLORIDA
.0 GEORGIA
.0 ILLINOIS
.0 INDIANA
.0 KENTUCKY
0.0 LOUISIANA
0.0 MARYLAND
1.0 MASSACHUSETTS
2.0 MICHIGAN
3.0 MISSISSIPPI
4.0 MISSOURI
5.0 NEW JERSEY
6.0 NEW YORK
7.0 NORTH CAROLINA
8.0 OHIO

[THIS PAGE INTENTIONALLY LEFT BLANK]

19.0	PENNSYLVANIA	 ·	
20.0	SOUTH CAROLINA	 	510
21.0	TENNESSEE	 •••••	
22.0	VIRGINIA	 •••••	529
23.0	WEST VIRGINIA	 •••••	569
24.0	DISTRICT OF COLUMBIA	 	595

TABLE OF CONTENTS

. .

	TC-1
1.0 INTRODUCTION	1-1
1.1 BACKGROUND	1.2
1.2 TYPES OF POTENTIAL ENVIRONMENTAL IMPACTS AND	1-2
METHODOLOGIES	1-6
1.2. Air Ouality	1-7
1.2.1.1 Emissions on Rail Line Segments at Rail Yards and	
Intermodal Facilities	1-9
1.2.1.2 Fugitive Dust	1-12
1.2.2 Noise	1-13
1.2.3 Transportation	1-15
1.2.4 Safety	1-16
1.2.4.1 Grade Crossings	1-17
1.2.4.1.1 Accidents	1-17
1.2.4.1.2 Vehicle Delays	1-22
1.2.4.2 Train Accidents	1-23
1.2.4.3 Hazardous Materials Transportation	1-26
1.2.4.4 Hazardous Waste Sites / Spill Sites on the Right-of-Way	1-32
1.2.5 Energy Impacts	1-32
1.2.5.1 Effects on the Transportation of Energy Resources and	
Recyclable Commodities	1-33
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency	· · · · 1-33 · · · · 1-33
Recyclable Commodities	1-33 1-33 1-34
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings	1-33 1-33 1-34 1-34
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings	1-33 1-33 1-34 1-34
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA	1-33 1-33 1-34 1-34 2-1
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS	1-33 1-33 1-34 1-34 2-1 2-1
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County	1-33 1-33 1-34 1-34 2-1 2-1 2-3
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas	1-33 1-33 1-34 1-34 2-1 2-1 2-3 2-3
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.1.1 Jefferson County, AL	1-33 1-33 1-34 1-34 2-1 2-1 2-3 2-3 2-3
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1 Attainment Areas	1-33 1-33 1-34 1-34 2-1 2-1 2-3 2-3 2-3 2-4
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1 Attainment Areas 2.1.2.1 Etowah County, AL 2.1.2.11 Etowah County, AL	1-33 1-33 1-34 1-34 2-1 2-3 2-3 2-3 2-4 2-4
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1.2 St. Clair County, AL 2.1.2.1.2 St. Clair County, AL	1-33 1-33 1-34 1-34 2-1 2-1 2-3 2-3 2-3 2-3 2-4 2-4 2-5
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1.2 Attainment Areas 2.1.2.1.1 Etowah County, AL 2.1.2.1.2 St. Clair County, AL 2.2 NOISE IMPACTS	1-33 1-33 1-34 1-34 2-1 2-3 2-3 2-3 2-3 2-4 2-4 2-5 2-6
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1.1 Impact Analysis by County, AL 2.1.2.1.1 Impact Analysis by County, AL 2.1.2.1.2 St. Clair County, AL 2.1.2.1.3 TRANSPORTATION	1-33 1-33 1-34 1-34 2-1 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-6 2-6
Recvclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.2.1.1 Impact Analysis by County 2.1.1.1 Isofferson County, AL 2.1.2.1 Attainment Areas 2.1.2.1.2 St. Clair County, AL 2.1 Cardo Crossing Safety 2.4 1 Grade Crossing Safety	1-33 1-33 1-34 1-34 1-34 2-1 2-2-1 2-3 2-3 2-4 2-5 2-6 2-7
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.1.1 Jefferson County, AL 2.1.2.1 Attainment Areas 2.1.2.1.1 Etowah County, AL 2.2 NOISE IMPACTS 2.3 TRANSPORTATION 2.4 SAFETY 2.4.1 Grade Crossing Safety 2.4.2 Harmer laws Materials Transportation	$\begin{array}{c} & & 1-33 \\ & & 1-33 \\ & & 1-34 \\ & & 1-34 \\ \\ & & 2-1 \\ & & 2-1 \\ & & 2-1 \\ \\ & & 2-3 \\ & & 2-3 \\ \\ & & 2-3 \\ \\ & & 2-3 \\ \\ & & 2-4 \\ \\ & & 2-4 \\ \\ & & 2-5 \\ \\ & & 2-6 \\ \\ & & 2-6 \\ \\ & & 2-7 \\ \\ & & 2-7 \\ \\ & & 2-7 \end{array}$
Recyclable Commodities 1.2.5.2 Effects on Energy Efficiency 1.2.5.3 Rail-to-Truck Diversions 1.2.6 Summary of Findings 1.2.6 Summary of Findings 2.0 ALABAMA 2.1 AIR QUALITY IMPACTS 2.1.1 Impact Analysis by County 2.1.1 Impact Analysis by County 2.1.1.1 Nonattainment Areas 2.1.1.1 Jefferson County, AL 2.1.2.1 Attainment Areas 2.1.2.1.1 Etowah County, AL 2.1.2.1.2 St. Clair County, AL 2.1 St. Clair County, AL 2.2 NOISE IMPACTS 2.3 TRANSPORTATION 2.4 SAFETY 2.4.1 Grade Crossing Safety 2.4.2 Hazardous Water Sites (Smith Sites on the Dick of Weight)	1-33 1-33 1-34 1-34 1-34 1-34 2-1 2-2 2-3 2-3 2-4 2-5 2-6 2-7 2-7 2-8

ß

3.0 DELAWARE	1
3.1 A'R QUALITY IMPACTS	2
3.1.1 Impact Analysis by County 3-3	3
3.1.4.1 Nonattainment Areas 3-3	3
3.1.4.1.1 New Castle County, DE	3
3.2 NOISE IMPACTS	6
3.3 TRANSPORTATION	7
3.4 SAFETY	8
3.4.1 Grade Crossing Safety 3-8	8
3.4.2 Hazardous Materials Transportation	8
3.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 3-8	8
4.0 FLORIDA 4-1	1
5.0 GEORGIA	1
5.1 AIR QUALITY IMPACTS	2
5.1.1 Impact Analysis by County 5-4	4
5.1.1.1 Nonattainment Areas	4
5.1.1.1.1 Clayton County, GA	4
5.1.1.1.2 DeKalb County, GA	5
5.1.1.1.3 Fulton County, GA	7
5.1.1.1.4 Henry County, GA	9
5.1.1.2 Attainment Areas 5-10	0
5.1.1.2.1 Butts County, GA	0
5.1.1.2.2 Monroe County, GA	:
5.2 NOISE IMPACTS	2
5.3 TRANSPORTATION	4
5.4 SAFETY	5
5.4.1 Grade Crossing Safety 5-16	5
5.4.2 Hazardous Materials Transportation	7
5.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 5-18	8
6.0 ILLINOIS	1
6.1 AIR QUALITY IMPACTS 6-2	2
6.1.1 Impact Analysis by County	5
6.1.1.1 Nonattainment Areas	5
6.1.1.1.1 Cook County, IL	5
6.1.1.1.2 Madison County, IL	9
6.1.1.2 <u>Attainment Areas</u> 6-10	D
6.1.1.2.1 Champaign County, IL)
6.1.1.2.2 Christian County, IL	1
6.1.1.2.3 Macon County, IL	3

6.1.1.2.4 Macoupin County, IL
6.1.1.2.5 Montgomery County, IL
6.1.1.2.6 Piatt County, IL
6.1.1.2.7 Vermilion County, IL
6.2 NOISE IMPACTS
6.3 TRANSPORTATION
6.4 SAFETY
6.4.1 Grade Crossing Safety
6.4.2 Hazardous Mater ais Transportation
6.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way
7.0 INDIANA
7.1 AIR QUALITY IMPACTS
7.1.1 Impact Analysis by County
7.1.1.1 Nonattainment Areas
7.1.1.1.1 Lake County, IN
7.1.1.1.2 LaPorte County. IN
7.1.1.1.3 Porter County, IN
7.1.1.2 Maintenance Areas
7.1.1.2.1 St. Joseph County, IN
7.1.1.3 Attainment Areas
7.1.1.3.1 Allen County, IN
7.1.1.3.2 Carroll County, IN
7.1.1.3.3 Cass County, IN
7.1.1.3.4 DeKalb County, IN
7.1.1.3.5 Delaware County, IN
7.1.1.3.6 Fountain County, IN
7.1.1.3.7 Gibson County, IN
7.1.1.3.8 Huntington County, IN
7.1.1.3.9 Knox County, IN
7.1.1.3.10 Kosciusko County, IN
7.1.1.3.11 Madison County, IN
7.1.1.3.12 Marshall County, IN
7.1.1.3.13 Miami County, IN
7.1.1.3.14 Noble County, IN
7.1.1.3.15 Starke County, IN
7.1.1.3.16 Tippecanoe County, IN
7.1.1.3.17 Vanderburgh, County, IN
7.1.1.3.18 Wabash County, IN
7.1.1.3.19 Warren County, IN
7.1.1.3.20 Whitley County, IN
7.2 NOISE IMPACTS
7.3 TRANSPORTATION

.

7.4 SAFETY
7.4.1 Grade Crossing Safety 7-61
7.4.2 Hazardous Materials Transportation
7.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way
8.0 KENTUCKY
8.1 AIR QUALITY IMPACTS 8-2
8.1.1 Impact Analysis by County 8-3
8.1.1.1 Nonattainment Areas
8.1.1.1.1 Jefferson County, KY
8.1.1.2 <u>Attainment Areas</u>
8.1.1.2.1 Christian County, KY
8.1.1.2.2 Henderson County, KY
8.1.1.2.3 Hopkins County, KY
8.1.1.2.4 Todd County, KY
8.1.1.2.5 Webster County, KY
8.2 NOISE IMPACTS
8.3 TRANSPORTATION
8.4 SAFETY
8.4.1 Grade Crossing Safety
8.4.2 Hazardous Materials Transportation
8.4.3 <u>Hazardous waste Sites/Spill Sites on the Right-of-Way</u>
8.4.3 <u>Hazardous waste Sites/Spill Sites on the Right-of-Way</u>
9.0 LOUISIANA
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1.1 Orleans Parish, LA 9-3
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-3 9.2 NOISE IMPACTS 9-4
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1 9.1 9.1 9.2 9.1.1.1 Orleans Parish, LA 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1 9.1 9.1 9.1 9.1 Maintenance Areas 9-3 9.1 9.1 9.1 9.3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1 Maintenance Areas 9-3 9.1.1.1 Maintenance Areas 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2
8.4.3 Hazardous waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1 Maintenance Areas 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Orleans Parish, LA 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2 10.1.1 Impact Analysis by County 10-5
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Orleans Parish, LA 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2 10.1.1 Impact Analysis by County 10-5 10.1.1.1 Nonattainment Areas 10-5
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Orleans Parish, LA 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2 10.1.1 Impact Analysis by County 10-5 10.1.1.1 Nonattainment Areas 10-5 10.1.1.1.1 Anne Arundel County, MD 10-5
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Orleans Parish, LA 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2 10.1.1 Impact Analysis by County 10-5 10.1.1.1 Nonattainment Areas 10-5 10.1.1.1.2 Baltimore County, MD 10-5
8.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 8-13 9.0 LOUISIANA 9-1 9.1 AIR QUALITY IMPACTS 9-2 9.1.1 Impact Analysis by Parish 9-3 9.1.1.1 Maintenance Areas 9-3 9.1.1.1 Orleans Parish, LA 9-3 9.2 NOISE IMPACTS 9-4 9.3 TRANSPORTATION 9-5 9.4 SAFETY 9-6 9.4.1 Grade Crossing Safety 9-7 9.4.2 Hazardous Materials Transportation 9-7 9.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 9-7 10.0 MARYLAND 10-1 10.1 AIR QUALITY IMPACTS 10-2 10.1.1 Impact Analysis by County 10-5 10.1.1.1 Nonattainment Areas 10-5 10.1.1.1.2 Baltimore County, MD 10-7 10.1.1.1.3 Baltimore City, MD 10-8

10.1.1.1.5 Frederick County, MD	10-11
10.1.1.1.6 Howard County, MD	10-12
10.1.1.1.7 Montgomery County, MD	10-14
10.1.1.1.8 Prince George's County, MD	10-15
10.1.1.2 Attainment Areas	10-17
10.1.1.2.1 Washington County, MD	10-17
10.2 NOISE IMPACTS	10-19
10.3 TRANSPORTATION	10-24
10.4 SAFETY	10-25
10.4.1 Grade Crossing Safety	10-25
10.4.2 Hazardous Materials Transportation	10-27
10.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way	10-27
11.0 MASSACHUSETTS	11-1
12.0 MICHIGAN	12-1
12.1 AIR QUALITY IMPACTS	12-2
12.1.1 Impact Analysis by County	12-4
12.1.1.1 Nonattainment Areas	12-4
12.1.1.1.1 Wayne County, MI	12-4
12.1.1.2 <u>Maintenance Areas</u>	12-6
12.1.1.2.1 Monroe County, MI	12-7
12.2 NOISE IMPACTS	12-8
	. 12-13
12.4 SAFETY	. 12-14
12.4.1 Grade Crossing Safety	12-15
12.4.2 Hazardous Materials Transportation	12-10
12.4.3 <u>Hazardous waste Siles/Spill Siles on the Right-of-way</u>	. 12-17
12.0 MISSISSIDDI	12.1
15.0 MISSISSIFFI	13-1
14.0 MISSOURI	14-1
14.1 AIR OLIALITY IMPACTS	14-1
14.1 1 Impact Analysis by County	14-3
14.1.1.1 Nonattainment Areas	14-3
14.1.1.1 St. Louis City County MO	14-3
14.1.1.2 Maintenance	14-4
14.1.1.2.1 Clay County, MO	14-4
14.2 NOISE IMPACTS	14-5
14.3 TRANSPORTATION	. 14-8
14.4 SAFETY	. 14-10
14.4.1 Grade Crossing Safety	. 14-10
14.4.2 Hazardous Materials Transportation	. 14-10

ð

14.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way
15 ONEW PROPY
15.0 NEW JERSEY
15.1 AIR QUALITY IMPACTS 15-3
15.1.1 Impact Analysis by County 15-5
15.1.1.1 <u>Nonattainment Areas</u> 15-5
15.1.1.1.1 Bergen County, NJ 15-5
15.1.1.1.2 Essex County, NJ 15-7
15.1.1.1.3 Hudson County, NJ 15-8
15.1.1.1.4 Mercer County, NJ 15-10
15.1.1.1.5 Middlesex County, NJ 15-11
15.1.1.1.6 Union County, NJ
15.2 NOISE IMPACTS 15-13
15.3 TRANSPORTATION 15-16
15.4 SAFETY 15-19
15.4.1 Grade Crossing Safety 15-19
15.4.2 Hazardous Materials Transportation
15.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 15-20
16.0 NEW YORK
16.1 AIR QUALITY IMPACTS 16-2
16.1.1 Impact Analysis by County 16-4
16.1.1.1 Nonattainment Area 16-4
16.1.1.1.1 Albany County, NY
16.1.1.1.2 Erie County, NY 16-5
16.1.1.1.3 Montgomery County, NY
16.1.1.1.4 Orange County, NY 16-9
16.1.1.1.5 Rensselaer County, NY
16.1.1.1.6 Rockland County, NY
16.1.1.1.7 Schenectady County, NY
16.1.1.2 Attainment Areas
16.1.1.2.1 Chautauqua County, NY
16.1.1.2.2 Chemung County, NY
16.1.1.2.3 Schuyler County, NY
16.1.1.2.4 Seneca County, NY
16.1.1.2.5 Steuben County, NY 16-17
16.1.1.2.6 Yates County, NY
16.2 NOISE IMPACTS 16-19
16.3 TRANSPORTATION 16-27
16.4 SAFETY 16-27
16.4.1 Grade Crossing Safety 16-27
16.4.2 Hazardous Materials Transportation
16.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way

17.0 NORTH CAROLINA
18.4 0140
18.0 OHIO
18.1 AIR QUALITY IMPACTS
18.1.1 Impact Analysis by County 18-7
18.1.1.1 Nonattainment Areas
¹ 8.1.1.1.1 Butler County, OH
18.1.1.1.2 Cuyahoga County, OH
18.1.1.1.3 Hamilton County, OH
18.1.1.1.4 Lake County, OH
18.1.1.1.5 Lorain County, OH
18.1.1.1.6 Lucas County, OH
18.1.1.1.7 Warren County, OH
18.1.1.2 <u>Maintenance Areas</u>
18.1.1.2.1 Ashtabula County, OH
18.1.1.2.2 Delaware County, OH
18.1.1.2.3 Franklin County, OH
18.1.1.2.4 Mahoning County, OH
18.1.1.2.5 Montgomery County, OH
18.1.1.2.6 Trumbull County, OH
18.1.1.2.7 Wood County, OH
18.1.1.3 Attainment Areas
18.1.1.3.1 Allen County, OH 18-31
18.1.1.3.2 Crawford County, OH
18.1.1.3.3 Defiance County, OH
18.1.1.3.4 Erie County, OH
18.1.1.3.5 Hancock County, OH
18.1.1.3.6 Hardin County, OH 18-37
18.1.1.3.7 Henry County, OH
18.1.1.3.8 Huron County, OH
18.1.1.3.9 Marion County, OH 18-42
18.1.1.3.10 Ottawa County, OH
18.1.1.3.11 Richland County, OH
18.1.1.3.12 Sandusky County, OH
18.1.1.3.13 Seneca County, OH
18.1.1.3.14 Van Wert County, OH
18.1.1.3.15 Wyandot County, OH
18.2 NOISE IMPACTS 18-50
18.3 TRANSPORTATION IMPACTS 18-87
18.4 SAFETY
18.4.1 Grade Crossing Safety 18-90
18.4.2 Hazardous Materials Transportation

18.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way	93
19.0 PENNSYLVANIA	-1
19.1 AIR QUALITY IMPACTS 19.	-3
19.1.1 Impact Analysis by County 19.	-7
19.1.1.1 Nonattainment Areas 19.	-7
19.1.1.1.1 Allegheny County, PA 19.	-7
19.1.1.1.2 Beaver County, PA 19-	-9
19.1.1.1.3 Bucks County, PA	0
19.1.1.1.4 Butler County, PA 19-1	12
19.1.1.1.5 Cumberland County, PA	3
19.1.1.1.6 Dauphin County, PA	4
19.1.1.1.7 Delaware County, PA	6
19.1.1.1.8 Erie County, PA	8
19.1.1.1.9 Fayette County, PA	9
19.1.1.1.10 Franklin County, PA	0
19.1.1.1.11 Lancaster County, PA	1
19.1.1.1.12 Lawrence County, PA	2
19.1.1.1.13 Northampton County, PA	3
19.1.1.1.14 Philadelphia County, PA	4
19.1.1.1.15 Somerset County, PA	7
19.1.1.1.16 Washington County, PA	8
19.1.1.1.17 Westmoreland County, PA 19-29	9
19.1.1.1.18 York County, PA 19-3	1
19.2 NOISE IMPACTS 19-32	2
19.3 TRANSPORTATION 19-48	8
19.4 SAFETY 19-53	3
19.4.1 Grade Crossing Safety 19-54	4
19.4.2 Hazardous Materials Transportation	7
19.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 19-57	7
20.0 SOUTH CAROLINA	1
21.0 TENNESSEE	1
21.1 AIR QUALITY IMPACTS	2
21.1.1 Impact Analysis by County 21-4	4
21.1.1.1 <u>Nonattainment Areas</u>	\$
21.1.1.1.1 Shelby County, TN	4
21.1.1.1.2 Sumner County, TN	5
21.1.1.2 <u>Maintenance Areas</u>	1
21.1.1.2.1 Davidson County, TN	1
21.1.1.3 <u>Attainment Areas</u>	\$
21.1.1.3.1 Montgomery County, TN	\$

21.1.1.3.2 Robertson County, TN	21-9
21.2 NOISE IMPACTS	21-10
21.3 TRANSPORTATION	21-11
21.4 SAFETY	21-13
21.4.1 Grade Crossing Safety	21-13
21.4.2 Hazardous Materials Transportation	21-14
21.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 2	21-14
22.0 VIRGINIA	22-1
22.1 AIR QUALITY IMPACTS	22-2
22.1.1 Impact Analysis by County	22-4
22.1.1.1 Nonattainment Areas	22-4
22.1.1.1.1 Alexandria County, VA	22-4
22.1.1.1.2 Chesterfield County, VA	22-5
22.1.1.1.3 Colonial Heights County, VA	22-6
22.1.1.1.4 Fairfax County, VA	22-7
22.1.1.1.5 Hanover County, VA	22-8
22.1.1.1.6 Henrico County, VA	2-10
22.1.1.1.7 Prince William County, VA	22-11
22.1.1.1.8 Richmond City, VA	2-12
22.1.1.1.9 Stafford County, VA	2-13
22.1.1.2 Attainment Areas	2-14
22.1.1.2.1 Augusta County, VA 2	2-14
22.1.1.2.2 Botetourt County, VA	2-15
22.1.1.2.3 Buena Vista County, VA	2-16
22.1.1.2.4 Clarke County, VA	2-17
22.1.1.2.5 Page County, VA	2-18
22.1.1.2.6 Roanoke County, VA	2-19
22.1.1.2.7 Roanoke City, VA	2-20
22.1.1.2.8 Rockbridge County, VA	2-21
22.1.1.2.9 Rockingham County, VA	2-22
22.1.1.2.10 Warren County, VA	2-23
22.1.1.2.11 Waynesboro County, VA	2-24
22.2 NOISE IMPACTS 2	2-25
22.3 TRANSPORTATION	2-35
22.4 SAFETY	2-35
22.4.1 Grade Crossing Safety	2-36
22.4.2 Hazardous Materials Transportation	2-37
22.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way 2	2-37
22 A WEST VIDCINIA	22.1
22.0 WEST VIRUINIA	23-1
23.1 AIR QUALITT INFACTS	23-2
25.1.1 Impact Analysis by County	23-4

Part 2 - Operational Impacts

.

23.1.1.1 Maintenance Areas	23-4
23.1.1.1.1 Kanawha County, WV	23-4
23.1.1.2 Attainment Areas	23-5
23.1.1.2.1 Berkeley County, WV	23-5
23.1.1.2.2 Fayette County, WV	23-6
23.1.1.2.3 Jefferson County, WV	23-8
23.1.1.2.4 Marion County, WV	23-9
23.1.1.2.5 Raleigh County, WV	23-10
23.1.1.2.6 Wyoming County	23-11
23.2 NOISE IMPACTS	23-12
23.3 TRANSPORTATION	23-21
23.4 SAFETY	23-22
23.4.1 Grade Crossing Safety	23-22
23.4.2 Hazardous Materials Transportation	23-23
23.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way	23-23
24.0 DISTRICT OF COLUMBIA	24-1
24.1 AIR QUALITY IMPACTS	24-2
24.2 NOISE IMPACTS	24-3
24.3 TRANSPORTATION	24-5
24.4 SAFETY	24-5
24.4.1 Grade Crossing Safety	24-6
24.4.2 Hazardous Materials Transportation	24-6
24.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way	24-7

1.0 INTRODUCTION

This document is Part 2 of the Environmental Report (ER) prepared for the proposed Acquisition of Conrail, Inc. and Consolidated Rail Corporation (hereafter collectively Conrail) by CSX Corporation and CSX Transportation, Inc. (hereafter collectively CSX) and Norfolk Southern Corporation and Norfolk Southern Railway Company (hereafter collectively NS) and the subsequent division of Conrail's assets. As used hereafter in this ER, the term "Acquisition" means the entirety of the transactions contemplated in this proceeding.

After the Acquisition, CSX operations would utilize both its existing system and those Conrail rail line segments, rail yards and intermodal facilities proposed to be allocated to CSX. Also, NS operations would utilize both its existing system and those Conrail rail line segments, rail yards and intermodal facilities proposed to be allocated to NS. In addition, both CSX and NS would operate on Shared Assets Area rail line segments, and at Shared Assets Area rail yards and intermodal facilities. The Shared Assets Area designated as North Jersey is located in New Jersey; the South Jersey/Philadelphia Shared Assets Area is located in New Jersey and Pennsylvania and an additional Shared Asset Area is located in Detroit, MI. Subject to Amtrak's concurrence, both CSX and NS would operate freight trains on the Northeast Corridor (NEC) between Northern New Jersey and Washington, D.C.

This Part contains an analysis of the potential environmental impacts that could result from increased traffic on CSX, NS and Shared Assets Area rail line segments and increased activity at rail yards and intermodal facilities (trailer on flat car/container on flat car (TOFC/COFC) and Triple Crown Services, Inc. (TCS) facilities). The analysis demonstrates that, overall, no significant adverse impacts in the areas of air quality, noise, transportation, safety or energy would result from the proposed Acquisition.

Environmental Report

1.1 BACKGROUND

As a result of the proposed Acquisition, train traffic would increase on rail lines that would enable more efficient and effective service, with corollary decreases on other rail lines. Additionally, increased activity would occur at some rail yards and intermodal facilities and would decrease at other rail yards and intermodal facilities. Further, the proposed Acquisition would result in some increased local truck traffic in and around several intermodal facilities and decreased local truck traffic in and around other intermodal facilities. There would be a significant decrease in longhaul truck traffic because of diversions of freight from truck to rail.

Consistent with the STB's environmental rules at 49 CFR 1105.7(e), this Part identifies potential environmental impacts to air quality, noise levels, transportation (local and regional), safety and energy for areas affected by increased rail and intermodal operations. Quantitative analyses of potential impacts to air and noise quality are presented for rail line segments, rail yards and intermodal facilities where increased activity would meet the STB's respective environmental analysis thresholds. (See Tables 1-1 and 1-2.)

The potential effects of offsetting decreases in rail and intermodal operations are noted, but, consistent with the STB's environmental regulations, decreases in rail and intermodal operations are not given the detailed analysis provided for those operations that meet STB's thresholds for environmental analysis. Accordingly, the analyses presented in this Part significantly overstate the potential localized impacts of the Acquisition.

Table 1-1Surface Transportation Board'sAir Quality Thresholds for Impact Analysis

Rail Facility	Threshold				
Attainment Areas ¹ (49 CFR 1105.7 (e)(5)(i))					
Rail Line Segments	Increase of at least 8 trains per day or at least 100 percent as measured in annual gross ton miles				
Rail Yards	Increase of at least 100 percent in carload activity				
Intermodal Facilities	Increase in truck traffic greater than 10 percent of average daily traffic or 50 trucks per day				
Class 1 and Nonattainment Areas (49 CFR 1105.7 (e)(5)(ii))					
Rail Line Segments	Increase of at least 3 trains per day or at least 50 percent as measured in annual gross ton miles				
Rail Yards	Increase of at least 20 percent in carload activity				
Intermodal Facilities	Increase in truck traffic greater than 10 percent of average daily traffic or 50 trucks per day				

Environmental Report

¹The U.S. Environmental Protection. Agency (USEPA) has developed National Ambient Air Quality Standards (NAAQS) for six criteria pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), lead (Pb) and particulate matter less than 10 microns in diameter (PM-10). Ambient air quality status is determined on a pollutant-by-pollutant basis. Areas in which ambient air quality concentrations of a pollutant are less than these standards are considered attainment areas for that pollutant. Conversely, areas where ambient concentrations exceed the standards for a pollutant are considered nonattainment areas. Maintenance areas are previously designated nonattainment areas that have been redesignated attainment.

Table 1-2 Surface Transportation Board's Noise Thresholds for Impact Analysis

Rail Facility	Threshold (49 CFR 1105.7 (e)(6))
Rail Line Segments	Increase of at least 8 trains per day or at least 100 percent as measured in annual gross ton miles
Rail Yards	Increase of at least 100 percent in carload activity
Intermodal Facilities	Increase in truck trathic greater than 10 percent of average daily traffic or 50 trucks per day

Rail Line Segments

Rail line segments are portions of a rail line that are between two terminals or junction points (nodes) (e.g. the Conrail rail line segment between Monroe, MI and Trenton, MI). The proposed Acquisition would allow the railroads to combine and optimize their rail networks. Optimization of the expanded systems includes selection of more direct and efficient routes. Improved efficiency and expanded single-line service are expected to result in the diversion of a significant amount of traffic from truck to rail. As a result of these changes, traffic would increase on the rail line segments along single line through-routes and decrease on many other rail line segments.

CSX's and NS's operating plans were reviewed to identify those rail line segments where increased traffic would meet STB thresholds. In the proposed Acquisition, 110 rail line segments in 15 states (Alabama, Delaware, Georgia, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, Tennessee, Virginia and West Virginia) and the District of Columbia would experience traffic increases that meet the STB's air quality analysis thresholds. Of these, 68 segments in 13 states (Delaware, Georgia, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, Virginia and West Virginia) and the District of Columbia would experience traffic increases that meet the STB's noise analysis thresholds. Figures 2-1 through 2-3 show the location of the rail line segments affected by the proposed Acquisition. Additionally, figures for each state are provided in the state discussions.

Environmental Report

Part 2 - Operational Impacts

1-4

For each such rail line segment, locomotive emissions of the six pollutants that have National Ambient Air Quality Standards (NAAQS) were quantified: volatile organic compounds (VOCs)⁴, carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx)², particulate matter (PM)³ and lead (Pb). For those segments that required noise analysis, overall noise impacts (weighted 24-hour exposure levels, Ldn) were modeled.

Rail Yards

Primary transportation activities in rail yards include switching and sorting of rail cars and assembling of trains. Switch engines are used to move cars within rail yards and have 1,000 to 2,300 horsepower. Rail yards vary in size, ranging from small support yards with a few tracks to large classification yards with dozens of tracks. Ancillary functions may also be performed at rail yards, including locomotive fueling and maintenance, and freight car inspection, cleaning and repair.

In the proposed Acquisition, 15 rail yards in 10 states (Alabama, Georgia, Illinois, Indiana, Michigan, Missouri, New York, Ohio, Pennsylvania, and Tennessee) would have increased activity that meet the STB's air quality analysis thresholds. Activity changes at four of the rail yards in three states (Indiana, Ohio, and Pennsylvania) also would meet the noise analysis thresholds. Figures 2-4 through 2-6 show the location of the rail yards affected by the proposed Acquisition. The same six air pollutants quantified for rail line segments were quantified for these rail yards. For those rail yards that required noise analysis, overall noise impacts (Ldn's) were modeled.

Environmental Report

²The NAAQS is for nitrogen dioxide (NO2), but the emissions are calculated for all oxides of nitrogen (NOx), including NO2, because the available emission factor is for NOx.

³The NAAQS is for particulate matter less than 10 microns in diameter (PM-10), but the emissions are calculated as total particulate matter (PM), because the available emission factor is for PM.

⁴One of the six criteria pollutants, ozone is not emitted by locomotives. Emissions of nitrogen oxides (NOx) and hydrocarbons or volatile organic compounds (VOCs) contribute to the formation of surface level ozone. NOx and VOCs are thus quantified, rather than ozone.

Intermodal Facilities (TOFC/COFC and TCS)

Intermodal facilities are specialized rail yards where truck trailers or containers are transferred between trains and trucks or between trains and ocean carriers. At TOFC/COFC facilities, this transfer is accomplished using lift equipment (cranes and side loaders). Intermodal operations consist of moving the train into the facility for loading/unloading, lifting the trailers or containers onto or off of the rail cars, and shuttling the containers to or from a holding area using yard trucks. TCS is a partnership owned jointly by NS and Conrail. Post-Acquisition, TCS will become a wholly-owned subsidiary of NS. TCS utilizes the RoadRailer® technology which uniquely equips RoadRailer® trailers for both highway and rail travel without the use of lift equipment. Intermodal operations combine the flexibility and local delivery ability of truck transport or the abilities of ocean carriers with the superior long-haul transportation efficiency of a train.

The proposed Acquisition would result in operational changes at certain intermodal facilities mainly because a significant amount of truck traffic would be diverted to rail. These changes could result in changes in traffic levels (increases at some facilities, decreases at other facilities) at these intermodal facilities and reductions in long-haul highway truck traffic.

Activity changes at 23 intermodal facilities in 11 states (Georgia, Illinois, Kentucky, Louisiana, Maryland, Michigan, Missouri, New Jersey, Ohio, Pennsylvania, and Tennessee) would meet the STB's air quality and noise analysis thresholds. Figures 2-4 through 2-6 show the location of the intermodal facilities affected by the proposed Acquisition. The same six air pollutants quantified for rail line segments were quantified for these intermodal facilities and overall noise impacts (Ldn's) were modeled.

1.2 TYPES OF POTENTIAL ENVIRONMENTAL IMPACTS AND METHODOLOGIES

This section summarizes the types of potential environmental impacts associated with increases in activity on rail line segments, at rail yards and intermodal facilities. Consistent with the

Environmental Report

1-6

STB's requirements, Acquisition-related environmental impacts to the following environmental areas were identified:

- · Air quality
- Noise
- Transportation
- Safety
- Energy

1.2.1 Air Quality

As a result of the Acquisition, air emissions would change systemwide and in some local areas. Systemwide, air emissions savings will be realized as a result of substantial truck-to-rail diversions. Other systemwide changes would result from the net change in activities at rail yards and intermodal facilities, rail-to-truck diversions, rail-to-rail diversions and rail traffic reroutes. Localized emissions changes would result primarily from changes in local yard and intermodal rail facility activity. The overall expected change in fuel consumption is discussed in Section 1.2.5.2. See Appendix A to Part 1 of this ER for a discussion of the Air Quality Methodology.

The net changes in activity at rail yards and intermodal facilities are expected to result in minor changes in emissions. Rail-to-truck diversions would be minimal, with a negligible change in emissions.

Rail-to-rail diversions and traffic reroutes are expected to result in a net reduction in diesel fue! consumption and associated emissions. Increased emissions on the CSX or NS system from traffic internally rerouted and/or diverted from other railroads is expected to be generally equal to or less than the emissions currently generated by CSX, NS or other railroads' lines because new CSX and NS routes would generally be more direct. (This includes rerouting projected by CSX for traffic currently on NS lines and portions of Conrail lines designated for NS, and vice versa.) Thus, the re-routing of traffic within the CSX and NS systems and diversions from other railroads would result in reduced ton-miles, and reduced fuel consumption and associated emissions.

Environmental Report

Part 2 - Operational Impacts

1-7

The most significant change in air emissions resulting from the Acquisition is the emissions decrease that would result from the over 1 million truck-to-rail diversions predicted by CSX and NS. Specifically, CSX's traffic studies have predicted truck-to-rail diversions totaling 437,978 diverted truckloads and NS has predicted approximately 589,000 diverted truckloads. The traffic studies were focused largely on new single line segments and more efficient services that CSX and NS would be able to offer on their respective systems as a result of the Acquisition. To the extent that CSX and NC would be in a position to offer service competitive with one another on a particular lane following the Acquisition, the studies took such competition into account and apportioned the predicted diversions between the carriers on the basis of business judgments made about the competitive strength of each carrier on the particular lane at issue.

Rail transport is much more fuel efficient than truck transport. Therefore, less fuel would be consumed as a result of truck-to-rail diversions. The truck-to-rail diversions would reduce fuel consumption by an estimated 120,707,000 gallons of diesel fuel annually. Thus the truck-to-rail diversions would result in reduced emissions of most pollutants except for sulfur dioxide (SO₂) emissions which would increase due to the higher sulfur content in the fuel used by locomotives. Emissions projections associated with the predicted truck-to-rail diversions are presented in Table 1-3.

	Estimated Increase in Emissions (tons per year)					
	NOx	со	voc	SO ₂	PM	Pb
CSX Truck-To-Rail Diversions						
Emissions from Increased Rail Traffic	8140	904	302	527	206	0.017
Emissions from Decreased Truck Traffic	(8732)	(3829)	(759)	(284)	(1016)	(.044)
CSX Net Truck-To-Rail Emissions Impact	(592)	(2925)	(457)	243	(810)	(.027)
NS Truck-To-Rail Diversions	~					
Emissions from Increased Rail Traffic	6253	694	232	405	158	.0132
Emissions from Decreased Truck Traffic	(8209)	(3600)	(714)	(267)	(955)	(.042)
NS Net Truck-To-Rail Emissions Impact	(1956)	(2905)	(482)	138	(797)	(.029)
Net Acquisition Emissions Impact	(2548)	(5830)	(939)	381	(1607)	(.056)

Table 1-3 Truck-to-Rail Air Emission Changes

1.2.1.1 Emissions on Rail Line Segments, at Rail Yards and Intermodal F wit ties

Sources of emissions from increased rail operations on rail line segments, at rail yards and intermodal facilities associated with the proposed Acquisition include:

- Road locomotives on rail line segments
- · Switch locomotives at rail yards
- · Vehicles (trucks and lift equipment) at intermodal facilities

Air quality impacts were analyzed for all locations where planned operational changes would meet the STB's air quality thresholds (Table 1-1). If any portion of a rail line segment traversed a nonattainment area, the projected traffic changes for the segment in that area were compared to STB air quality thresholds for nonattainment areas. The STB air quality threshold levels are more stringent for nonattainment areas.

The locations of nonattainment areas and the pollutants for which they are not in attainment are listed in 40 CFR 81 Subpart C, Section 107. For most of the United States, the nonattainment

areas are specified by state and county. Areas where ambient concentrations of a pollutant have historically exceeded the standards but currently do not exceed the standards are classified as maintenance areas. Figure 1-4 in Part 1 of the ER shows the location of nonattainment areas and maintenance areas in the study area. Air quality impacts were assessed in the following manner:

- The county(ies) for each rail line segment, rail yard and intermodal facility was determined.
- The air quality status of the identified counties was determined. For this study, counties that are only partially nonattainment were evaluated to determine if any CSX, NS or Conrail rail line segment, rail yard, or intermodal facility is in the nonattainment portion of the county. If any CSX, NS or Conrail rail line segment, rail yard or intermodal facility is in the nonattainment portion, the entire county was deemed nonattainment (D-NA) for purposes of evaluating all the rail facilities in the county. If no CSX, NS or Conrail rail line segment, rail yard or intermodal facility is in the nonattainment, rail yard or intermodal facility is in the county. If no CSX, NS or Conrail rail line segment, rail yard or intermodal facility is in the nonattainment portion, the entire county was deemed attainment (D-A).
- The operational changes of each facility (rail line segment, rail yard and/or intermodal facility) were compared to STB thresholds. Facilities where activity increases would meet the thresholds were identified.
- The estimated emissions from activity increases at these facilities were calculated. Emissions of the six pollutants (VOCs, CO, SO2, NOx, Pb and PM) were estimated using EPA-approved and Federal Highway Administration (FHWA)-approved analytical factors. For facilities in more than one county, emissions were prorated for the county(ies) where analysis was required.

No federal program designed to control air emissions applies directly to the proposed Acquisition of Conrail and subsequent operational changes. It was determined that the Clean Air Act's New

Environmental Report

Source Review criteria are the most appropriate benchmarks for evaluation of increased air emissions from rail yards and intermodal facilities, even though they only apply to stationary sources. There are no readily applicable benchmarks for the emissions of locomotives moving over rail lines.⁵

Under the New Source Review regulations, increases in VOC's or NO_x are considered to be a significant impact if emissions exceed the following levels:

- 100 tons/year in Ozone Maintenance Areas
- 100 tons/year in Marginal and Moderate Ozone Nonattainment Areas
- 50 tons/year in Serious Ozone Nonattainment Areas
- 25 tons/year in Severe Ozone Nonattainment Areas

The estimated VOC and NOx emissions from each analyzed rail yard and intermodal facility in ozone nonattainment and maintenance counties were compared to these benchmarks. None of the rail yards or intermodal facilities exceeded the benchmarks for VOC and NOx.

Increases in CO are considered a significant impact under the New Source Review regulations if emissions exceed:

- 100 tons/year in CO Maintenance Areas
- 100 tons/year in Marginal and Moderate CO Nonattainment Areas
- 50 tons/year in Serious CO Nonattainment Areas

The estimated CO emissions from each analyzed rail yard and intermodal facility in CO nonattainment and maintenance counties were compared to these benchmarks. None of the rail yards or intermodal facilities exceeded the benchmark for CO.

⁵Under EPA's regulations governing conformity of general federal actions in nonattainment and maintenance areas wit^h, federal and state air quality implementation plans, railroad control transactions are not subject to the General Conformity criteria (40 CFR 51.852). Moreover, the General Conformity criteria are area-specific and, in many areas, have not been fully developed or clearly defined. Therefore, the General Conformity criteria do not provide appropriate benchmarks for assessing the air emissions of the Acquisition.

Increases in PM are considered a significant impact under the New Source Review regulations if emislions exceed:

- 100 tons/year in PM-10 Maintenance Areas
- 100 tons/year in Marginal and Moderate PM-10 Nonattainment Areas
- 70 tons/year in Serious PM-10 Nonattainment Areas

The estimated PM emissions from each analyzed rail yard and intermodal facility in PM-10 nonattainment and maintenance counties were compared to these benchmarks. None of the rail yards or intermodal facilities exceeded the benchmark for PM.

Increases in SO_2 are considered a significant impact under the New Source Review regulations if emissions exceed 100 tons/year. The estimated SO_2 emissions from each analyzed rail yard and intermodal facility in SO_2 nonattainment and maintenance counties were compared to this benchmark. None of the rail yards or intermodal facilities exceeded the benchmark for SO_2 .

The U.S. Environmental Protection Agency has proposed air emission standards for locomotives at 62 Federal Register 6366-6405 (February 11, 1997). If these proposed air regulations are adopted, CSX and NS would comply with these standards. Under these rules, when final, air pollutant emissions from rail traffic would be reduced locally and systemwide. The beneficial effect of diverting freight from trucks to rail would thus become even greater than reported herein.

A detailed discussion of the methodology used to prepare air quality analyses is provided in Appendix A to Part 1 of this ER.

1.2.1.2 Fugitive Dust

No significant increase in fugitive dust at rail yards or intermodal facilities would result from the proposed action. Both CSX and NS would either increase dust-suppression activities or would pave facilities expecting to have substantial increased activity as a result of the proposed Acquisition.

Environmental Report

1.2.2 Noise

Overall, the Acquisition would result in increases in noise levels in areas where traffic and activities would increase and offsetting reductions in noise where traffic and activities would decrease. Noise reductions are not analyzed in this ER; only the impacts from increases are analyzed. Rail-to-rail diversions and internal rerouting of rail traffic are expected to have approximately equivalent and offsetting increases and decreases in noise impacts overall.

Overall rail traffic increases would result primarily from diversion of freight from truck-to-rail. These diversions are expected to result in the annual elimination of over one million truck moves (Table 1-4) from interstate highways and the substitution of a much smaller number of train moves to transport this freight. There will thus be a significant decrease in the number of noise sources.

Noise impacts from increases in overall noise levels at sensitive receptor sites (eg., residences, schools, hospitals, and churches) were analyzed for all locations where planned operational changes meet the STB's noise analysis thresholds. A summary of the STB thresholds for noise impact analysis is presented in Table 1-2.

Noise impacts were assessed in the following manner:

- Activity changes for each rail line segment, rail yard and intermodal facility in the
 proposed Acquisition were evaluated against the STB noise thresholds to identify
 those rail facilities (rail line segments, rail yards and intermodal facilities) where
 increased activity would meet the STB thresholds for noise analysis.
- For each rail line segment, rail yard and intermodal facility that required detailed noise analysis, overall noise impacts (weighted 24-hour exposure levels, Ldn) were quantified. The following assumptions, which reflect the general practice of each railroad, were used in the noise analysis:

Environmental Report

1-13

- Average train speed of 35 mph
- For CSX: 6,200-foot long train
- For NS: 5,000-foot long train
- A throttle setting no higher than position 6
- A daytime background level of 50 dBA
- A nighttime background level of 40 dBA
- Acoustical shielding using FHWA traffic noise prediction model
- Trains evenly distributed throughout 24 hours
- Half of trains from each direction at road crossings
- Analyses were performed to identify where the noise level would increase by 2 dBA or greater and be above 65 dBA. In areas that would experience such an increase, noisesensitive receptors within the pre-Acquisition and post-Acquisition 65 dBA Ldn contour were counted.

Fifty-five rail line segments, four rail yards and 23 intermodal facilities would experience an increase in activity that meets STB noise thresholds. The noise impact estimates for individual rail line segments, rail yards and intermodal facilities are given under the appropriate state section later in this Part. A detailed discussion of the noise methodology and models used in the impact analyses are provided in Appendix B to Part 1 of this ER.

The dominant noise sources are (1) the general noise from train operations (from wheels on rails, etc.) and (2) the audible warning signals at grade crossings. In order to minimize the general train noise, CSX and NS would continue to maintain their equipment to meet EPA's and FRA's noise standards. For safety reasons, Federal regulations require railroads to sound horns at grade crossings. The noise generated by the horn extends the 65 Ldn contour significantly farther from the rail line, increasing the potential for affecting noise-sensitive receptors. The noise generated by horns thus has a beneficial effect on safety but a detrimental effect on noise levels.

Environmental Report

1.2.3 Transportation

In considering the environmental impacts of the proposed Acquisition, the STB's regulations at 49 CFR 1105.7(e)(2) require a description of the effects of the proposed action on local or regional transportation systems and patterns, and an estimate of the amount of passenger or freight traffic that would be diverted to other transportation systems or modes as a result of the proposed action. The effects on the national transportation system were also analyzed.

For the purposes of this analysis, the local transportation system was defined as the local road network between affected intermodal facilities and the regional transportation system. The regional transportation system was defined as major regional and/or metropolitan roads and state highways. The national transportation system was defined as the interstate highway system.

Impacts on local and regional transportation systems and patterns were analyzed for any intermodal facility that would experience an average increase in truck traffic of more than 10 percent of the average daily traffic or at least 50 vehicles a day. Any impacts (i.e., increases in traffic levels) would result from additional trucks entering and exiting intermodal facilities to pick up and/or drop off freight containers. Increases in local truck activity near intermodal facilities could result from anticipated truck-to-rail diversions, rail-to-rail diversions, and extended hauls transported on the expanded CSX and NS systems.

A summary of truck-to-rail diversions is provided in Table 1-4. These diversions would result in increased local truck traffic into and out of intermodal facilities with corresponding decreases in long-haul traffic on the national highway transportation system. The decreases in long-haul traffic would reduce traffic congestion and the potential for accidents on the national highway transportation system. In addition to reducing truck traffic, the diversion of intermodal units from truck to rail would reduce emissions, extend the life of the national highway system, reduce highway maintenance costs and reduce fuel consumption.
	CSX	NS	Total	
Truck trips removed from national highways	437,978	589,000*	1,026,978	
Truck miles expected to be saved annually	402,900,000 379,200,000		782,100,000	
Note: Net systemwide en *NS projects a larg diversions than do	ergy savings are discus ger number of shorter le es CSX.	sed in more detail in Se ength intermodal trips i	ection 1.2.5.2. resulting from	

Table 1-4 Truck-to-Rail Diversions

A detailed discussion of the transportation methodology is provided in Appendix C to Part 1 of this ER.

1.2.4 Safety

Traffic changes from the Acquisition would result from changes in mode and routing of existing traffic. Rail-to-rail diversions and internal rerouting of rail traffic would result in increases in the potential for accidents and delays at grade crossings where traffic increases and offsetting reductions in the potential for accidents and delays at crossings where traffic decreases.

The major impact on safety from the Acquisition would result from truck-to-rail diversions. The reduction in long-haul truck miles would reduce traffic congestion and delays to motorists. (This effect is not quantified in this ER.) More importantly, the reduction in truck miles would result in a significant reduction in highway accidents, including fatal accidents, as discussed in Section 1.2.4.2.

Regarding safety impacts from the proposed Acquisition, STB rules at 49 CFR 1105.7 (e)(7) require the following:

 a description of the proposed action on public health and safety (including vehicle delay time at railroad grade crossings)

Environmental Report

- information on hazardous materials transportation, including the applicant's safety record
- · information on hazardous waste sites and spill sites on the right-of-way

A detailed discussion of the safety methodology is provided in Appendix D to Part 1 of this ER.

1.2.4.1 Grade Crossings

1.2.4.1.1 Accidents

The Federal Railroad Administration (FRA) keeps track of accidents at public grade crossings. In the *Highway-Rail Crossing Accident/Incident and Inventory Bulletin No. 17, Calendar Year 1994* (USDOT, FRA, July 1995), the FRA published a table of crossing accident rates by number of trains per day and annual average daily traffic (ADT). Portions of this table are presented below in Table 1-5. The estimated change in frequency of ...ccidents for a specific crossing can be determined by identifying the number of trains per day pre- and post-Acquisition on a line segment (provided in Sections 2 through 24), identifying the ADT of the road crossec by the line segment (provided in Sections 2 through 24) and, based on the identified information, finding the appropriate cells in Table 1-5. The information provided in Sections 2 through 24 only includes lines expected to have increased traffic meeting STB thresholds. Information on lines with decreased traffic and, therefore, decreased potential for accidents is provided in Part 1 of this ER, but is not discussed further in Part 2.

Number	Average Daily Traffic					
of Trains per Day	5,000-10,000	>10,000				
3-5	0.0382 (one accident every 26.2 years)	0.0535 (one accident every 18.7 years)				
6-10	0.0452 (one accident every 22.1 years)	0.0619 (one accident every 16.2 years)				
11-15	0.0672 (one accident every 14.9 years)	0.0902 (one accident every 11.1 years)				
16-20	0.0746 (one accident every 13.4 years)	0.1019 (one accident every 9.8 years)				
21-25	0.1062 (one accident every 9.4 years)	0.1046 (one accident every 9.6 years)				
26-30	0.088 (one accident every 11.4 years)	0.0822 (one accident every 12.2 years)				
>30	0.0711 (one accident every 14.1 years)	0.1012 (one accident every 9.9 years)				
Source: Highw	ay-Rail Crossing Accident/Incident and Inventory B	ulletin (DOT, FRA, July 1995).				

 Table 1-5

 Crossing Accident Rates By Number Of Trains And Average Daily Traffic

Safety, including grade crossing safety, is a primary concern of CSX and NS. Both CSX and NS are active participants in Operation Lifesaver programs which educate the public on the importance of grade crossing safety and traffic control requirements. CSX and NS also are active in the Officer-on-Train program where police agency personnel ride trains in an effort to improve enforcement of traffic control laws at crossings. Grade separations and warning system upgrades are the responsibility of state and local highway departments; both CSX and NS cooperate with highway departments to support and pursue grade separation programs, the elimination of grade crossings whenever possible, and the improvement of crossing warning systems.

CSX and NS would continue to maintain all rail line and grade crossing warning devices according to FRA Standards (49 CFR Part 213).

CSX Discussion

CSX has representation on the Program Development Council of Operation Lifesaver. Further, CSX has eight, full-time personnel dedicated to the Operation Lifesaver program at strategic locations throughout the CSX system; these employees are supplemented by 21 part time

Environmental Report

participants and 27 voluntary participants who provide presentations to the public. In 1997, CSX will conduct approximately 15 Grade Crossing Collision Investigation Courses for state, county and local agencies, including police agencies, to train agency personnel in the use of proper investigative techniques to identify causes of collisions, and improve safety.

During the last four years, the total number of grade crossing collisions on CSX lines has varied from year to year, with a significant improvement occurring from 1995 to 1996, as presented in Table 1-6.

Year	Number of Collisions	Change from Prior Year
1993	515	
1994	551	7%
1995	611	11%
1996	486	-20%

Table 1-6 CSX Grade Crossing Collision Statistics

During the last four years, CSX has closed over 1,000 grade crossings (87 crossings in 1993, 160 crossings in 1994, 282 crossings in 1995, and 507 crossings in 1996), and has a goal of closing 600 crossings this year. Although separating crossings and upgrading warning systems is the responsibility of state and local highway departments, CSX fully supports and participates in these projects. For example, on average CSX participates in the installation of 350 active warning systems at crossings each year.

CSX is currently working with state agencies on the following number of grade separation projects to eliminate the need for grade crossings:

5 in Alabama

- 7 in Michigan
- 1 in Delaware
- 13 in the District of Columbia
- 1 in Mississippi
- 19 in North Carolina

- 15 in Florida
- 18 in Georgia
- 12 in Illinois
- 34 in Indiana
- 18 in Kentucky
- 16 in Maryland

- 42 in Ohio
- 29 in Pennsylvania
- 6 in South Carolina
- 24 in Tennessee
- 40 in Virginia
- 20 in West Virginia

Conrail is currently working on 306 active grade separate projects on lines that would be assigned to CSX, excluding Shared Assets Areas. The projects by state are:

- 34 in Ohio
 118 in New York
- 16 in Pennsylvania
- 35 in Indiana
- 3 in District of Columbia
- 38 in Illinois
- 11 in Michigan
- 51 in Massachusetts

Changes in the probability of accidents at crossings primarily are related to changes in the number of trains passing existing crossings (both increases and decreases) and the on-going program to eliminate crossings. In addition, as discussed in Part 3, the grade crossings on the Paris to Danville, Illinois 29-mile long rail line segment proposed for abandonment would be eliminated and, as discussed in Part 4, three grade crossings near Willard Yard in Ohio would be eliminated as a result of a construction project.

NS Discussion

Over the last four years, the number of grade crossing collisions has steadily decreased on NS lines. Each NS operating division has a grade crossing team that evaluates line segments to help eliminate potential hazards. A member of NS's grade crossing department is on the Board of Directors and is Chairmen Elect of National Operation Lifesaver, Inc. In 1997, NS will conduct 38 Grade Crossing Collision Investigation Courses for state, county and local agencies, and police

agencies to help assure proper investigative techniques, identify causes of collisions and improve safety. As a result of these efforts, the total number of grade crossing collision has decreased steadily as presented in Table 1-7.

Year	Number of Collisions	Change from Prior Year
1993	826	
1994	749	-9.3 %
1995	692	-7.6 %
1996	567	-17.9 %

Table 1-7 Norfolk Southern Grade Crossing Collision Statistics

NS supports and pursues grade separations and eliminations whenever possible. NS closed 117 grade crossings in 1993, 196 crossings in 1994, 235 in 1995; and 285 in 1996. NS works in a supportive and cooperative fashion to help state and local highway departments prioritize and complete grade separations and warning system upgrades. NS coordinates with highway departments regarding eligibility of any crossings that might qualify for upgraded warning systems or grade separation projects.

NS is currently working with state agencies on the following number of grade separation projects to eliminate the need for grad crossings (in addition to those that would be eliminated by the proposed abandonments discussed in Part 3):

- 24 in Alabama
- 3 in New York
- 43 in Georgia
- 52 in North Carolina
- 23 in Illinois
- 54 in Ohio
- 30 in Indiana
- 3 in Pennsylvania
- 17 in Kentucky
- 17 in South Carolina
- 7 in Louisiana
 23 in Tennessee
- 2 in Michigan
 66 in Virginia

- 2 in Mississippi
 16 in West Virginia
- 16 in Missouri

Conrail is currently working on 317 active grade separation project on lines that would be assigned to NS. NS would continue with these as active projects. The projects by state are:

- 5 in Delaware
 60 in New York
- 16 in Illinois
 21 in New Jersey
- 43 in Indiana
 73 in Ohio
- 3 in Maryland
 62 in Pennsylvania
- 25 in Michigan
 9 in West Virginia

While only four new grade crossings and four expanded grade crossings are planned as a result of the Acquisition, NS estimates that over 99 existing grade crossings would be eliminated through abandonments. Since only four new crossings are expected, the change in probability of accidents at grade crossings would depend primarily upon the change in number of trains on rail line segments, the elimination of grade crossings from abandonments and the continuing program to eliminate crossings. Overall, the biggest impact on traffic accidents would result from the reduction in truck traffic over the national transportation system.

1.2.4.1.2 Vehicle Delays

Delays at grade crossings are a function of the number of trains per day, the time it takes for a train to pass the crossing, and the type of crossing warning device. Traffic delays are assumed to increase linearly with increasing train traffic.

CSX Discussion

The duration of vehicle delay per train depends upon the speed of the train and the length of the train. The average vehicle delay, based on the average CSX 6,200-foot train length, at various speeds is presented in Table 1-8.

Environmental Report

Train Speed (mph)	Average Delay (minutes)
10	4.1
20	2.3
30	1.7
40	1.4
50	1.3
60	1.1

Table 1-8 Average Delays at CSX Grade Crossings

NS Discussion

The duration of vehicle delay per train depends upon the speed of the train and the length of the train. The average vehicle delay, based on the average NS 5,000-foot train length at various speeds is presented in Table 1-9.

Train Speed (mph)	Average Delay (minutes)
10	3.4
20	2.0
30	1.5
40	1.3
50	1.1
60	1.0

Table 1-9 Average Vehicle Delays at NS Grade Crossings

1.2.4.2 Train Accidents

Train accidents involving damage as low as \$6,300 must be reported to the FRA. The number of FRA-reportable train accidents per million train-miles for CSX, NS and Conrail for 1991 through 1995 are listed in Table 1-10.

Environmental Report

Year	CSX	NS	Conrail
1991	2.81	2.86	4.74
1992	2.76	2.65	3.71
1993	2.62	2.23	4.17
1994	1.91	1.97	3.69
1995	1.90	1.93	3.31

Table 1-10 Train Accident Rates per Million Train Miles

CSX Discussion

According to railroad data, the accident rate for CSX in 1995 was 1.9 accidents per million train miles, approximately half the average rate of 3.71 accidents per million miles for Class I railroads. Using this figure, and an expected systemwide increase of approximately 6.14 million train-miles per year in the expanded CSX system (including increases on the Conrail segments shared with NS), the Acquisition could result in an increase of 11.67 accidents per year. Based on industry averages, derailments would be expected to account for 7.76 accidents or 66.5 percent of the increase, collisions would be expected to account for 1.05 accidents or 9 percent of the increase, and 2.86 accidents or 24.5 percent of the increase would be classified as "other."

The anticipated increase in accidents due to greater overall traffic levels on the expanded CSX system would be more than offset by reductions in accidents on highways and other railroads from which the traffic was diverted. The greater use of intermodal shipments on the expanded CSX system would result in a decrease of approximately 402.8 million long-haul truck-miles annually. Based on 1994 data from the Department of Transportation, this reduction in long-haul truck-miles would equate to a decrease of approximately 870 total traffic crashes per year involving large trucks. Additionally, approximately 225 of those would be crashes involving injuries and 11.0 of those would be fatal crashes killing one or more persons. Although the greater use of intermodal shipments would result in increased truck activity in the vicinity of some intermodal ramps, and may present a potential for increased accidents, these facilities generally are located in

Environmental Report

industrial areas which have a low potential for contact with pedestrian and non-commercial traffic. Overall, the Acquisition is expected to have a net beneficial effect on safety.

NS Discussion

In 1995, NS's train accident rate was 1.93 accidents per million train miles, approximately half the average rate of 3.71 accidents per million miles for Class I railroads. With an expected increase of approximately 3.59 million train miles per year on the expanded NS system and applying NS's current accident rate to this increase, the proposed Acquisition could result in an increase of 6.93 rail accidents per year on the expanded NS system. Based on national averages, 4.6 of these accidents would be derailments, 0.62 would be collisions and 1.71 would be "other" types of accidents. The anticipated increase in accidents due to greater overall traffic levels on the expanded NS system would be more than offset by reductions in accidents on highways and other railroads from which the traffic was diverted.

The greater use of intermodal shipments resulting from the proposed Acquisition would lead to increased truck activity in the vicinity of some of the intermodal facilities, creating the potential for increased accidents. However, increased use of intermodal shipments would also result in decreased long-haul truck traffic on highways and a corresponding potential for decreased accidents on the interstate highway system. The greater use of intermodal shipments on the expanded NS system would result in a decrease of approximately 379 million long-haul truck-miles annually. Based on 1994 data from the Department of Transportation, this reduction in long-haul truck-miles would equate to a decrease of approximately 820 total traffic crashes per

year involving large trucks. Additionally, approximately 211 of those would be injury crashes and 10.3 of those would be fatal crashes killing one or more persons.

Summary Discussion

Conrail's 1995 train accident rate was 3.31 accidents per million train miles. After the Acquisition, CSX and NS would each apply their focus and commitment and accompanying operating and maintenance practices to the expanded systems. Applying either CSX's or NS's current train accident rate of 1.90 or 1.93 to traffic to the existing Conrail system would result in a potential reduction of approximately 71 rail accidents per year. Taking into account the potential combined CSX and NS increase in rail accidents of 18.6 and the potential decrease in rail accidents of 71 on Conrail routes, along with the substantial decrease of 1,690 large truck crashes and projected reduction of 21 fatal crashes killing one or more persons, the Acquisition is expected to have a significant overall beneficial effect on safety.

1.2.4.3 Hazardous Materials Transportation

Safe transportation protects the resources of the customers and communities served as well as the resources of the railroads. CSX and NS have each independently adopted proactive programs to improve the safety of hazardous materials transportation. This has resulted in superior safety records for both CSX and NS compared to industry averages.

As part of their separate efforts to continually improve safety performance in transportation, both CSX and NS are Responsible Care® Partners. The Responsible Care® program was established by the Chemical Manufacturers Association (CMA) in 1988 as a proactive self-regulating approach to improving health, safety and environmental performance. The goal was to improve CMA members' performance in these areas to reduce the need and potential for additional government regulation.

The Responsible Care® Partnership program extends Responsible Care® requirements to non-CMA members including transportation companies which apply to join. Partners must align

Environmental Report

internal management practices to meet or continuously improve toward meeting established codes. The codes include: Community Awareness and Emergency Response; Process Safety; Pollution Prevention; Safe Distribution; Employee Health and Safety; and Product Stewardship.

CSX and NS are each fully committed to this proactive effort with their CMA customers to improve the safe transportation of chemicals and hazardous materials.

CSX and NS would continue to transport all hazardous materials in compliance with the U.S. Department of Transportation Federal Hazardous Materials Regulations (49 CFR Parts 171 to 180).

CSX Discussion

In 1996, CSX transported 4,566,000 carloads of freight on its 18,500 mile route system. Approximately, 7.4 percent of those shipments were hazardous materials, representing a total of about 337,500 carloads in 1996. These hazardous shipments moved primarily on routes designated as Key Routes in accordance with the Inter-Industry Task Force recommendations. CSX's Key Routes consist of 5538 miles or about 30 percent of CSX's total route system. CSX does not anticipate any increase in the percentage of hazardous materials relative to nonhazardous materials transported on its system as a result of the Acquisition. The vast majority of the increased traffic that CSX traffic studies predict would divert to its system from current truck and barge carriage is nonhazardous, particularly with respect to the predicted diversions to the CSX intermodal network. For that reason, it is likely that the percentage of hazardous freight relative to nonhazardous freight transported by CSX would decline as a result of the traffic increases attributable to the Acquisition. Further, as discussed in Section 1.2.4, the diversion of freight, including hazardous freight, from truck to rail should result generally in an enhancement in safety due to the better safety record of rail transport in comparison to truck transport. Although the quantity of hazardous commodities transported may increase, the proposed Acquisition would not affect the policies or operation of CSX concerning the type of hazardous materials transported or the methods used to safeguard shipments.

In 1996, CSX submitted 169 Department of Transportation (DOT) F 5800.1 reportable incident reports, most for minor releases. Therefore, more than 99.9 percent of hazardous material shipments arrived at their destination without a release incident.

CSX operating principles include standards and procedures for the handling and disposal of chemical products and wastes, and adherence to standards governing safe transportation of hazardous materials. Employees are provided with environmental awareness training that includes verbal and written statements of operating practices, as well as training sessions. Hazardous Materials Rules have been developed, and are included in the CSX Operating Procedures Manual; these rules were developed to govern the switching and handling of cars containing hazardous materials, substances or wastes. These procedures include a requirement that operating personnel have in their possession, and know how to use, the Emergency Response Guidebook (DOT P 5800.6) developed by the U.S. Department of Transportation.

CSX has a full-time staff of hazardous materials managers, two at its headquarters in Jacksonville and five strategically located throughout the CSX system. This group responds to and/or provides coordination with contractors and with emergency response personnel of any incident involving hazardous materials. This group also conducts inspections to insure compliance with U.S. Department of Transportation regulations and training for CSX employees and preemergency planning and response training for communities along the CSX network.

The emergency plans prepared by CSX are detailed and include a state listing of all agencies to be contacted in the event of an emergency. As part of its emergency response planning, CSX has developed PACE (Preventing Accidental Chemical Emergencies); copies of this document are available at appropriate locations, including rail yards, and include emergency procedures to be

Environmental Report

followed in the event of a hazardous material release. Telephone numbers for emergency responders (e.g., police, ambulance, fire department) are provided. In the event of a hazardous release, CSX has five field managers who will respond to provide remediation oversight; remediation is performed by qualified contractors who are retained by CSX to respond in the event releases occur.

Initial post-Acquisition plans would continue to be governed by existing emergency response plans, with improvements developed and implemented on an on-going basis, as required.

NS Discussion

Currently, 5.6 percent of NS's traffic consists of hazardous materials, representing a total of about 254,834 carloads in 1996. These hazardous material shipments moved primarily on routes designated as key routes (NS defines these as routes with annual hazardous materials traffic exceeding 9,000 carloads. This definition is more restrictive than the Inter-Industry Task Force Recommendations). In 1995, NS key routes consisted of 6,423 miles. NS does not anticipate any increase in the percentage of hazardous materials relative to nonhazardous materials transported on its system as a result of the Acquisition. The vast majority of the increased traffic that NS traffic studies predict would divert to its system from current truck carriage is nonhazardous, particularly with respect to the predicted diversions to the NS intermodal network. For that reason, it is likely that the percentage of hazardous freight relative to nonhazardous freight transported by NS would decline as a result of the traffic increases attributable to the Acquisition. Further, the diversion of freight, including hazardous freight, from truck to rail should result generally in an enhancement in safety due to the better safety record of rail transport in comparison to truck transport.

NS's environmental policy requires employees to understand and comply with environmental requirements. To assure that NS employees are aware of individual and corporate responsibilities for protection of the environment, NS implemented environmental awareness training for all employees. NS also implemented and regularly provides hazardous materials training for all

Environmental Report

Part 2 - Operational Impacts

39

1-29

employees with duties related to hazardous materials transportation. NS is involved with local communities in providing training for fire, police and emergency response departments. NS is also involved in community outreach programs. NS has received numerous safety and service awards, including the Harriman Gold Safety Award for the last eight years. The Harriman Gold Safety Award is the highest safety honor for railroads.

NS transported 254,924 shipments of hazardous materials in 1996. During the same year, NS had a company record low total of 90 Department of Transportation (DOT) F 5800.1 reportable incidents, mostly minor in nature. Over 99.96 percent of the hazardous materials shipments arrived at their destination without incident.

The proposed Acquisition would not affect the NS policies or operating procedures governing the transport of hazardous materials. Although the quantities of materials transported may increase, the Acquisition would not affect the type of materials handled. NS would adopt the best from existing NS and Conrail methods used to safeguard shipments and focus on more improvements.

NS developed and maintains corporate and divisional Emergency Action Plans based on the principles of Prevention, Preparedness, Response and Remediation. In the event of a hazardous material incident, NS implements its Emergency Action Plans. These plans would be revised to reflect changes in systemwide operations implemented as part of the Acquisition.

Prevention of incidents is the primary challenge, with a goal of zero incidents. Prevention efforts include: hazardous materials training of employees; compliance with regulations, operating rules, safety rules and industry recommended operating practices; maintenance of the railroad's infrastructure and equipment; and risk assessment to target and prioritize opportunities to improve performance.

Preparedness to respond includes: distribution and maintenance of the written response plans, instructions, guidelines and contact lists of agencies, personnel and contractors; training

Environmental Report

1-30

employees, fire departments and other public emergency response personnel how to handle hazardous materials incident responsibilities; conducting emergency response exercises; and conducting hazardous materials audits.

Response efforts are taken to prevent or minimize any detrimental effects to health, safety and the environment. Response efforts include: safe initial assessment of an incident; a structured system for reporting the response to government agencies, the shipper(s) and company personnel; and an established network of qualified emergency response contractors across the NS system which are mobilized as indicated by the location and nature of ir cidents. Ten full-time NS Environmental Operations Engineers are located strategically throughout the NS system to respond to incidents, supervise the response and remediation efforts of contractors, and coordinate with regulatory agencies.

Re ediation efforts bring the incident to a close and restore the environment and area. Remediation tasks include assessment of the site, contamination and risks; development of a corrective action plan; corrective action; and confirmation assessment. Remediation of serious incidents is typically performed in cooperation with and under the supervision of regulatory authorities.

In addition to systemwide and division Emergency Action Plans, NS has Spill Prevention Control and Countermeasure (SPCC) plans, Facility Response Plans (FRPs), and Hazardous Waste Management plans at numerous fixed facilities. Conrail has an analogous set of response plans. Initial post-Acquisition activities would continue to be governed by the existing plans. Revised systemwide plans would be developed and implemented after the Acquisition to govern the Conrail assets operated by NS.

Shared Assets Areas Discussion

CSX and NS are both committed to effective and safe management of Shared Assets Areas, including hazardous materials transportation and incident response. Currently, Conrail has

Environmental Report

Part 2 - Operational Impacts

hazardous materials compliance programs and response plans for areas that would become Shared Assets Areas (North Jersey, South Jersey/Philadelphia, and Detroit, MI). Initially, Conrail's programs and plans would remain in place after the Acquisition. Any changes to these plans and practices would be drawn from the best management practices of Conrail, CSX and NS.

1.2.4.4 Hazardous Waste Sites / Spill Sites on the Right-of-Way

The proposed Acquisition would have no effect on the number or nature of known hazardous waste sites along the CSX or NS rights-of-way. CSX, NS and Conrail have policies to comply with all environmental requirements.

CSX's, NS's and Conrail's hazardous material reportable incidents from 1991 through 1995 are summarized in Tables F-1, F-2 and F-3, respectively, in Appendix F to Part 1 of this ER. These incidents are reported according to Federal Railroad Administration requirements. Most of the incidents involve low quantity releases caused by improper shipper securement of tank car valves. (The tank cars are normally not owned or maintained by railroads.) Most of these incidents have little or no environmental impact. As described in Section 1.2.4.3, when an incident occurs that does result in environmental contamination, response efforts include remediating the site. Post-Acquisition, CSX and NS would continue to follow appropriate emergency response procedures outlined in their Emergency Response Plans in the case of a hazardous materials spill.

1.2.5 Energy Impacts

The STB's environmental rules at 49 CFR 1105.7(e)(4) require a description of:

- The effect of the proposed action on transportation of energy resources and recyclable commodities.
- Whether the proposed action would result in an increase or decrease in overall energy efficiency.
- The extent to which the proposed action would cause diversions from rail to motor carriage (rail-to-truck).

Environmental Report

1.2.5.1 Effects on the Transportation of Energy Resources and Recyclable Commodities

Energy-producing materials that may be transported include: coal, fuel oils, liquefied gases, wood products, chemical products and various petroleum-based products. Recyclable commodities that may be transported include: aluminum alloy scrap, iron or steel scrap or tailings and waste paper. Based on traffic studies performed by NS and CSX, it was determined that no substantial volumes of energy-producing or recyclable commodities are expected to be diverted from truck to rail. Most of the traffic predicted for diversion consists of containerized intermodal commodities; energy-producing and recyclable commodities are not generally transported by intermodal service.

The increased overall efficiency of operation would benefit the transportation by rail of energy resources and recyclable commodities due to the shorter, more direct transportation routes. The increased efficiency and competition resulting from the Acquisition is expected to result in economic benefits to shippers and users of energy-producing materials and recyclable commodities.

1.2.5.2 Effects on Energy Efficiency

As a result of the Acquisition, there will be an overall change in fuel consumption from the effects of truck-to-rail diversions, rail-to-truck diversions, rail-to-rail diversions, rerouting, and the net change in activities at yards and intermodal facilities. As discussed in Section 1.2.1, traffic changes other than truck-to-rail diversions are expected to result in a slight reduction in diesel fuel consumption. The reduction would result because traffic changes (other than truck-to-rail diversions) generally involve rerouting existing rail traffic to shorter, more efficient routes. Activities in rail yards and at intermodal activities would result in minor increases in fuel consumption. Few rail-to-truck diversions are expected and thus their impact on fuel consumption would be negligible. The effects on fuel consumption from rail-to-rail diversions, rerouting, and changes in activity at rail yards and intermodal facilities would be negligible compared to the truck-to-rail impact and have therefore not been analyzed in detail.

1-33

A substantial savings in fuel consumption for the Acquisition (over 120 million gallons annually) would result from truck-to-rail diversions. The increased rail fuel consumption and decreased truck fuel consumption associated with ruck-to-rail diversions are presented in Table 1-11. See Appendix E to Part 1 of this ER for a discussion of the Energy Methodology.

Then to Aun Diversion I dei Consumption Changes					
	Diesel Fuel (gallons)				
CSX Truck-To-Rail Diversions					
Fuel from Increased Rail Traffic	28,743,000				
Fuel from Decreased Truck Traffic	(84,854,000)				
CSX Net Truck-To-Rail Fuel Change	(56,111,000)				
NS Truck-To-Rail Diversions					
Fuel from Increased Rail Traffic	22,078,000				
Fuel from Decreased Truck Traffic	(86,674,000)				
NS Net Truck-To-Rail Fuel Change	(64,596,000)				
Net Acquisition Fuel Impact	(120,707,000)				

Table 1-11 Truck-to-Rail Diversion Fuel Consumption Changes

1.2.5.3 Rail-to-Truck Diversions

As explained in Part 3 of this ER, none of the limited rail-to-truck diversions that might result from the proposed CSX and NS abandonments would meet the STB thresholds for analysis. Any changes in energy efficiency arising from diversion from rail to truck for short-haul movement are expected to be insignificant.

1.2.6 Summary of Findings

Sections 2.0 through 24.0 of this Part provide detailed discussions, by state, of the environmental impacts from increased activity on rail line segments, at rail yards and at intermodal facilities. Impacts to air quality, noise, transportation, and safety from the proposed Acquisition are discussed for each affected state. Within each state's discussion, air quality impacts are discussed

Environmental Report

on a county-by-county basis. Noise impacts are presented by rail line segment, rail yard and/or intermodal facility. Transportation impacts are discussed by rail line segment and/or intermodal facility. Safety impacts are addressed at the state level.

The following analyses demonstrate that, overall, no significant adverse impacts in the areas of air quality, noise, transportation or safety would result from the proposed Acquisition.

Systemwide,

- Air quality is expected to improve because the proposed Acquisition would result in a substantial amount of beneficial truck-to-rail diversions.
- Noise levels would increase in some areas and decrease in other areas in approximately
 equivalent amounts, and the number of noise sources would decrease.
- Transportation and safety benefits are expected because numerous long-haul trucks would be diverted to rail, reducing traffic congestion and the potential for highway accidents. The reduction in potential highway accidents would more than offset the potential increase in vehicle-train collisions, with a projected reduction of 21 fatal crashes resulting in one or more deaths.

Fuel consumption would be reduced significantly from truck-to-rail diversions.

At local levels,

- Air pollutants in a particular area could increase or decrease. The overall impact in individual counties are overstated in this ER because decreases in emissions associated with reduced truck traffic and reduced traffic on rail line segments have not been quantified on a county by county basis.
- Noise impacts in a particular area could increase or decrease. Noise impacts are expected in some residential areas from increased traffic on rail lines. No additional noise impacts are expected from increased rail yard and intermodal facility activity.
- Local transportation impacts from increased activity at intermodal facilities would be insignificant because, in every case but one, the increased truck activity would

Environmental Report

represent a relatively small percentage (less than 12 percent) of the overall traffic on the local roads.

2.0 .____ABAMA

2.0 ALABAMA

RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITY IMPACTS

This section provides an analysis of the potential environmental impacts in Alabama resulting from increases in activity on rail line segments, at rail yards and at intermodal facilities related to the proposed Acquisition. Consistent with the Surface Transportation Board's (STB) environmental rules at 49 CFR Part 1105.7(e), the analysis specifically considered impacts to: (1) air quality, (2) noise, (3) local and regional transportation systems and (4) safety. This analysis indicates that the proposed Acquisition would have relatively minor environmental impacts in Alabama. Before assessing the environmental impacts, a brief description of the key elements of the Acquisition as it relates to Alabama immediately follows.

Both CSX and NS will reroute movements to more efficient routes that will improve customer service, on-time performance and car utilization. Alabama shippers will extend their single-line market reach via CSX and NS into the Northeast and Midwest. Significant potential exists for CSX and NS to divert traffic from trucks to rail, which will have a favorable impact upon highway congestion and air quality conditions.

No route abandonments are anticipated in Alabama by CSX or NS.

2.1 AIR QUALITY IMPACTS

Of the 67 counties in Alabama, two counties have nonattainment areas for air quality. The nonattainment areas are near Birmingham. These areas are nonattainment for ozone.

One county with a nonattainment area for ozone and two counties with attainment areas have CSX and NS rail line segments or rail yards that meet STB thresholds (see Table 1-1). These are listed below and shown in Figures 2-7.1. Line segments with Amtrak or commuter trains operating on them are in bold.

Environmental Report

54

Part 2 - Operational Impacts

		r Dail V	ard	in Cars F	landled per Da	NY I
		CSX Ran	T	RailCars	Pos	.t-
ward	County	Air Quali Status	ity	Pre- A 990	equisition	186
aillai		N				
	Jefferson					
5	1					
Nonattainment						
			Coomi	ent	Day	Increase
		NS Rail L	ine Segu	Trains	per Day	in GTM
Rail Line S	Segment	County	Air Quality Status	Pre Ac 7.4	quisition 12.6	(%)
From Noms Yd, AL	Analla, AL	Etowah St. Clair Jefferson	AN			
• N = Nonatta • GTM = Gro The increase the Impact vicinity of (and in oth decreases the expan	imment, A = Attainess Ton Miles es in air emissio Analysis by Co these rail facilit her states served in localized air nded CSX and Y	nment ns resulting fr unty section. ties or rail line 1 by CSX and emissions. T NS systems to	om the inc Air emissio segments. NS) would hese decre shorter, m	reases in trai ons would be However, o experience ases would be ore direct ro	ffic or activity e increased in other rail facil decreases in t oe a result of r utes. d result in red emit a lower 1	y are estimated i the immediate lities in Alabam traffic or activity rerouting freight luced air emission evel of air pollu

the vicinity of

unit of freight moved than trucks, the di reduced air emissions systemwide.

Part 2 - Operational Impacts

2-2

3

Environmental Report

Rus

2.1.1 Impact Analysis by County

This section analyzes the impacts to air quality in each county where a rail line segment, rail yard and/or intermodal facility meets the STB thresholds for analysis of air emissions. If a rail line segment crosses the county boundary, only the emissions from that portion of the segment within the county are estimated. Counties that are nonattainment or were deemed nonattainment areas are discussed first, followed by counties that are attainment or were deemed attainment areas.

2.1.1.1 Nonattainment Areas

In Alabama, one county classified as a nonattainment area has a rail line segment and a rail yard that would experience increases in traffic or activity that would meet STB thresholds.

2.1.1.1.1 Jefferson County, AL

Jefferson County is classified as nonattainment (marginal) for ozone and is classified as partial maintenance for lead. Increases in emissions have been estimated for each of the rail facilities in Jefferson County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Yard		Estimated Increase in Emissions (tons per year)						
	NOx	со	voc	SO ₂	РМ	Pb		
Boyles	11.0	1.3	0.60	0.50	0.20	0.000016		

Estimated Increases in Emissions for the CSX Rail Yard

NC	Rail	I ine	Seament
	ман	Line	Segment

Rail Line Segment		Total	Length	Trains per Day			Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Norris Yd, AL	Attalla, AL	48.00	13.76	7.4	12.6	5.2	15
• GTM = Gross Ton	Miles						

Environmental Report

Rail Li	Estimated Increase in Emissions (tons per year)							
From	То	NOx	CO	voc	SO ₂	PM	Pb	
Norris Yd, AL	Attalla, AL	18.06	2.01	0.67	1.17	0.46	0.000038	
• NOx = nitrogen o PM = particulate	oxides, CO = carbon m matter, Pb = lead	onoxide, VOC =	volatile or	ganic compo	ounds, SO	= sulfur d	lioxide,	

Estimated Increases in Emissions for the Portion of the NS Rail Line Segment in Jefferson County

Discussion of Impacts in Jefferson County

Rail line segments and rail yards are considered mobile (not stationary) sources under EPA's air pollution regulations. As discussed in Section 1.2.1, emissions from activities at rail yards in nonattainment areas were compared to the New Source Review benchmark for marginal nonattainment areas (i.e., 100 ton5/year). None of the facilities' emissions increases would exceed the New Source Review Criteria.

The increased rail segment activity in Jefferson County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

2.1.2.1 Attainment Areas

In Alabama, two counties classified as attainment areas have a rail line segment that would experience increases in traffic or activity that would meet STB thresholds.

2.1.2.1.1 Etowah County, AL

Etowah County is an attainment area. Increases in emissions have been estimated for the rail line segment in Etowah County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Environmental Report

Rail Line Segment		Total	Length	T	Change		
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post- isition	Change	in GTM (%)
Norris Yd, AL	Attalla, AL	48.00	6.66	7.4	12.6	5.2	15
• GTM = Gross Tor	n Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of the NS Rail Line Segment in Etowah County

Pail Li	Estimated Increase in Emissions (tons per year)						
From	То	NOx	со	voc	SO ₂	PM	Pb
Norris Yd, AL	Attalla, AL	8.74	0.97	0.32	0.57	0.22	0.000018
• NOx = nitrogen PM = particulate	oxides, CO = carbon m matter, Pb = lead	onoxide, VOC :	= volatile o	rganic comp	oounds, S	$O_2 = $ sulfu	ur dioxide,

Discussion of Impacts in Etowah County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Etowah County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

2.1.2.1.2 St. Clair County, AL

St. Clair County is an attainment area. Increases in emissions have been estimated for the rail line segment in St. Clair county that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Line Segment		Total	Length	Trains per Day			Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Norris Yd, AL	Attalla, AL	48.00	27.59	7.4	12.6	5.2	15
• GTM = Gross To	on Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of the NS Rail Line Segment in St. Clair County

Rail Lin	Estimated Increase in Emissions (tons per year)							
From	То	NOx	со	voc	SO2	PM	Pb	
Norris Yd, AL	Attalla, AL	36.22	4.02	1.34	2.35	0.91	0.000076	
 NOx = nitrogen oxides, CO = carbon monoxide, VOC = volatile organic compounds, SO₂ = sulfur dioxide, PM = particulate matter, Pb = lead 								

Discussion of Impacts in St. Clair County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in St. Clair County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased reil activity.

2.2 NOISE IMPACTS

No CSX or NS rail line segments, rail yards and/or intermodal facilities in Alabama would experience increases in traffic or activity meeting the STB thresholds for noise analysis.

2.3 TRANSPORTATION

There are no intermodal facilities in Alabama that would experience an increase of 50 trucks or more per day or an increase in 10 percent of the ADT on local roads.

Environmental Report

2.4 SAFETY

Impacts on safety may occur as a resule of increased traffic on rail line segments. Safety impacts are primarily related to changes in vehicle delays at grade crossings and the potential for trainvehicle accidents at grade crossings. Other safety impacts include potential train accidents and hazardous materials incidents.

No significant adverse safety impacts would result in Alabama from the proposed Acquisition. Overall, a net safety benefit is expected due to truck-to-rail diversions. Safety issues and methodology are discussed in Section 1.2.4 of Part 2 and in Appendix D of Part 1 of this ER.

2.4.1 Grade Crossing Safety

The NS grade crossings with an ADT of 5,000 or greater along analyzed lines are listed below. The estimated change in frequency of accidents for a specific crossing can be determined by identifying the number of trains per day pre- and post-Acquisition on the specified line segment (Section 2.1), identifying the ADT of the road crossed by the line segment listed below, and based on the identified information, finding the appropriate cells in Table 1-5 in Section 1.2.4.1.

County		Rail Line Segment			ADT		
	City	From	То	Crossed	5,000 - 10,000	> 10,000	
Jefferson	Trussville	Norris Yd, AL	Attalla, AL	Roper Road	x	\sim	
Etowah	Attalla	Norris Yd, AL	Attalla, AL	Gilbert Ferry Road		x	

NS Analyzed Grade Crossings with an ADT of 5,000 or greater

Although the potential for accidents at grade crossings would increase for crossings with increased train traffic, the potential for accidents on interstate highways would decrease because the number of long-haul trucks would decrease. Systemwide, the Acquisition is expected to have a beneficial effect on safety.

Information on vehicle delays is provided in Section 1.2.4.1.2.

Environmental Report
2.4.2 Hazardous Materials Transportation

The proposed Acquisition would not affect CSX's and NS's policies or operating procedures governing the transport of hazardous materials. Although the quantities of materials transported may increase, the Acquisition would not affect the type of materials handled or the methods used to ensure the safe movement of these shipments. Additional information on CSX's and NS's transportation of hazardous materials is provided in Section 1.2.4.3 of this Part.

2.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way

Information on CSX and NS hazardous waste sites and spill sites is provided in Section 1.2.4.4 of this Part. A summary of CSX's, NS's and Conrail's hazardous materials reportable in cidents from 1991 through 1995 is provided in Appendix F to Part 1.

2-8

3.0 DELAWARE

3.0 DELAWARE

RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITY IMPACTS

This section provides an analysis of the potential environmental impacts in Delaware resulting from increases in activity on rail line segments, at rail yards and at intermodal facilities related to the proposed Acquisition. Consistent with the Surface Transportation Board's (STB) environmental rules at 49 CFR Part 1105.7(e), the analysis specifically considered impacts to: (1) air quality, (2) noise, (3) local and regional transportation systems and (4) safety. This analysis indicates that the proposed Acquisition would have environmental impacts in Delaware. Before assessing the environmental impacts, a brief description of the key elements of the Acquisition as it relates to Delaware immediately follows.

Through this Acquisition, Delaware will continue to be served by two Class I railroads offering both carload and intermodal services. Delaware shippers will gain new and more efficient routes and services. The Port of Wilmington will gain extended market reach to the Midwest and Southeast through the expanded CSX and NS networks. No abandonments are proposed in Delaware.

Conrail operates freight trains over the Northeast Corridor (NEC) through Delaware; these trains operate primarily at night. CSX and NS anticipate that freight traffic over the NEC will increase, but trains will be operated at night so as not to inte; fere with the passenger service on the NEC.

CSX operates and owns a line between Philadelphia and Baltimore which passes through Delaware. NS will have limited rights to use this CSX line, in addition to the NEC route.

NS will replace Conrail on most Conrail-owned lines in the state. NS will work with area shortlines to expand the reach of Delmarva shippers to the Southeast and Midwest. NS is exploring ways to improve rail access to the state from the NEC.

No route abandonments are anticipated in Delaware by CSX or NS.

3.1 AIR QUALITY IMPACTS

Of the three counties in Delaware, one county (New Castle) is nonattainment for ozone. The CSX, NS, and Northeast Corridor (NEC) rail line segments in Delaware would experience increases in activity that meet STB thresholds (see Table 1-1). These are hoted below and are shown in Figures 2-9.1, 2-9.2 and 2-9.3. Line segments with Amtrak or commuter trains operating on them are in bold.

Rail L	ine Segment		Air Quality Status	Trains	Increase	
From	То	County		Pre- Acqu	Post-	in GTM (%)
RG, PA	Wilsmere, DE	New Castle	N	22.9	26.4	23.00
• N = Nonattainment						

CSX Rail Line Segment

NS Rail Line Segment

Rail Lin	Rail Line Segment		A	Trains			
From	То	County	Quality Status	Pre- Acqu	Pre- Post- Acquisition		
Edgemoor, DE	Bell, DE	New Castle	N	5.0	11.8	162	
 N = Nonattain GTM = Gross 	ment Ton Miles				1		

THE Nan Line Segments	N	EC	Rail	Line	Segments
-----------------------	---	----	------	------	----------

]	Rail Line Segment				Air	Trains	Increase	
From		То		County	Quality Status	Fre- Acqu	Post- isition	ia GTM (%)
Davis	DE	Perryville	MD	New Castle	N	71.5	79.4	74
Arsenal	PA	Davis	DE	New Castle	N	118.3	126.5	63
• N = Nonatta	inment							

Fnvironmental Report

The increases in air emissions resulting from the increases in traffic or activity are estimated in the Impact Analysis by County section. Air emissions would be increased in the immediate vicinity of these rail facilities; however, other rail facilities in Delaware (and in other states served by CSX and NS) would experience decreases in traffic or activity, with consequent decreases in localized air emissions. These decreases would be a result of rerouting freight on the expanded CSX and NS systems to shorter, more direct routes.

In addition, the diversion of freight from trucks to rail would result in reduced air emissions in the vicinity of major highways. Moreover, because trains emit a lower level of air pollutants per unit of freight moved than trucks, the diversion of freight from trucks to rail would also result in reduced air emissions systemwide.

3.1.1 Impact Analysis by County

This section analyzes the impacts to air quality in each county where a rail line segment, rail yard and/or intermodal facility meets the STB thresholds for analysis of air emissions. If a rail line segment crosses the county boundary, only the emissions from that portion of the segment within the county are estimated. The nonattainment counties are discussed below.

3.1.4.1 Nonattainment Areas

In Deleware, one county classified as nonattainment has rail line segments that would experience increases in traffic or activity that would meet STB thresholds.

3.1.4.1.1 New Castle County, DE

New Castle County is classified as nonattainment (severe) for ozone. Increases in emissions have been estimated for each of the rail facilities in New Castle County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Environmental Report

66

Rail Line Segment		Total	Length	Т	Change		
From	То	IotalwithinLength (miles)County (miles)	Pre- Acqu	Post- isition	Change	in GTM (%)	
RG, PA	Wilsmere, DE	26	10.8	22.9	26.4	3.5	23
• GTM = Gross To	n Miles				-		

CSX Rail Line Segment

Estimated Increases in Emissions for the Portion of the CSX Rail Line Segment in New Castle County

Rail	Estimated Increases in Emissions (tons per year)							
From	То	NOx	со	voc	SO ₂	PM	Pb	
RG, PA	Wilsmere, DE	39.30	4.40	1.50	2.50	1.00	0.000083	
• NOx = nitrogen PM = particulate	oxides, CO = carbon mon matter, Pb = lead	oxide, VOC =	volatile org	ganic compo	ounds, SO ₂	= sulfur di	oxide,	

NS Rail Line Segment

Rail Line Segment		Total	Total Length	T	Traias per Day			
From	То	Length (miles)	1 otal within Length County (miles) (miles)	Pre- Acqu	Post-	Change	in GTM (%)	
Edgemoor, DE	Bell, DE	1.00	1.00	5.00	11.80	6.80	162	
• GTM = Gross T	on Miles							

Estimated Increases in Emissions for the Portion of the NS Rail Line Segment in New Castle County

Rail Lin		Estimated Increases in Emissions (tons per year)							
From	То	NOx	со	voc	SO2	PM	Pb		
Edgemoor, DE	Bell, DE	3.08	0.34	0.11	0.20	0.08	0.0000065		
• NOx = nitrogen o PM = particulate	oxides, CO = carbon n matter, Pb = lead	ionoxide, VOC :	= volatile org	anic compo	unds, SO ₂	= sulfur d	ioxide		

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles) (miles) (miles)		Pre- Acqu	Post- isition	Change	in GTM (%)
Davis, DE	Perryville, MD	21.1	9.8	71.5	79.4	7.9	74
Arsenal, PA	Davis, DF	25.0	14.5	118.3	126.5	8.2	63
• GTM = Gross Ton 1	Miles						

NEC Rail Line Segments

Estimated Increases in Emissions for the Portion of NEC Rail Line Segments in New Castle County

Rail	Estimated Increases in Emissions (tons per year)							
From	То	NOx	со	voc	SO2	РМ	Pb	
Davis, DE	Perryville, MD	73.20	8.10	2.70	4.70	1.80	0.00016	
Arsenal, PA	Davis, DE	102.40	11.40	3.80	6.60	2.60	0.00022	
	Total	175.60	19.50	6.50	11.30	3.60	0.00038	
 NOx = nitrogen PM = particulat 	oxides, CO = carbon monoxic e matter. Pb = lead	le, VOC =	volatile org	anic compo	ounds, SO ₂	= sulfur die	oxide,	

Discussion of Impacts in New Castle County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail segment activity in New Castle County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

3.2 NOISE IMPACTS

The CSX, NS, and the NEC rail line segments that would experience increases in traffic or activity meeting the STB thresholds for noise analysis (see Table 1-2) are listed below. Analyses were performed to identify where the noise level would increase by 2 dBA or greater and be above 65 dBA. In areas that would experience such an increase, noise-sensitive receptors within the pre- and post-Acquisition 65 dBA Ldn contour were counted. The number of noise-sensitive receptors (residences, schools, churches, hospitals) is provided. If a rail line segment crosses state boundaries, the portion of the segment in each state is analyzed under the same segment name in the noise section of that state.

Segment		1	Frains Per I	Day	Change in	Distance to Ldn Contour	
From	То	Pre- Acqu	Post-	Difference	dBA	Line Segment	Grade Crossing
Edgemoor, DE	Bell, DE	5.0	11.8	6.8	3.6	100	350

NS Rail Line Segment

Edgemoor, DE to Bell, DE

This rail segment currently has 5 trains per day. This segment would experience an increase of 6.84 trains per day and an increase of 161.51 percent in gross ton-miles per year as a result of the proposed Acquisition. The change in train volume would result in an Ldn increase of 3.6 dBA, exceeding the impact criterion. Most noise impacts would generally occur at or near grade crossings where train horns would be sounded as a warning; however, no grade crossings are on this segment. The current 65 dBA Ldn contour of 50 feet (100 feet at grade crossings) would extend to approximately 200 feet (350 feet at grade crossings) perpendicular to the tracks. Noise impacts for sensitive receptors along this segment are described below:

Edgemoor

This is a small community where the track trends southwest to northeast along the southeast edge of this community. There are residences, businesses, schools and churches in this community.

Environmental Report

Bellefonte

This is a mid-sized community where the southwest to northeast trending track is in the south part of the city. Numerous residences, businesses and industries occur on both sides of the rail. Schools and churches are also located in this community.

	Pre-Ac	quisition		Post-Acquisition					
Residences	Schools	Churches	Hospitals	Residences	Schools	Churches	Hospitals		
0	0	0	0	3	0	1	0		

Number of Sensitive Receptors Edgemoor, DE to Bell, DE Line Segment

- S	egment		Trains Per Day				
			Freight	Freight			Change in
From	То	Passenger	Pre-	Post-	Difference	dBA	
			Acqu	isition			
Arsenal, PA	Davis, DE	116	118.3	126.5	8.2	1.0	

NEC Rail Line Segment

Arsenal, PA to Davis, DE

This line segment would be an NEC line. The current train traffic on this segment is an average of 2.3 freight trains per day and 116 passenger trains per day. As a result of the Acquisition, the segment is projected to experience an average increase of 8.2 freight trains per day. Because of the large number of passenger trains, the projected increase in freight traffic would have only a minimal impact on the noise environment. The projected change in freight train volume would result in an Ldn increase of approximately 1 dBA. No adverse noise impacts are projected for this line segment.

3.3 TRANSPORTATION

There are no intermodal facilities in Delaware.

Environmental Report

3.4 SAFETY

Impacts on safety may occur as a result of increased traffic on rail line segments. Safety impacts are primarily related to changes in vehicle delays at grade crossings and the potential for trainvehicle accidents at grade crossings. Other safety impacts include potential train accidents and hazardous materials incidents.

No significant adverse safety impacts would result from the proposed Acquisition. Overall, a net safety benefit is expected due to truck-to-rail diversions. A detailed discussion of the safety issues and methodology is discussed in Section 1.2.4 of Part 2 and in Appendix D of Part 1 of this ER.

3.4.1 Grade Crossing Safety

Grade crossings along analyzed CSX, NS or NEC rail line segments do not have an ADT of 5,000 or greater.

3.4.2 Hazardous Materials Transportation

The proposed Acquisition would not affect CSX and NS policies or operating procedures governing the transport of hazardous materials. Although the quantities of materials transported may increase, the Acquisition would not affect the type of materials hand'ed or the methods used to ensure the safe movement of these shipments. Additional information on CSX and NS transportation of hazardous materials is provided in Section 1.2.4.3 of this Part.

3.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way

Information on CSX and NS hazardous waste sites and spill sites is provided in Section 1.2.4.4 of this Part. A summary of CSX, NS and Conrail hazardous materials reportable incidents from 1991 through 1995 is provided in Appendix F to Part 1.

4.0 FLORIDA

4.0 FLORIDA

RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITY IMPACTS

No CSX or NS rail line segments, rail yards or intermodal facilities in Florida would experience increased traffic or activity that would meet STB thresholds. Therefore no adverse impacts would occur in Florida as a result of the proposed Acquisition. CSX and NS anticipate that due to predicted truck-to-rail diversions, Florida will experience a benefit in the areas of air emissions, noise and safety.

Environmental Report

5.0 GEORGIA

5.0 GEORGIA

RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITY IMPACTS

This section provides an analysis of the potential environmental impacts in Georgia resulting from increases in activity on rail line segments, at rail yards and at intermodal facilities related to the proposed Acquisition. Consistent with the Surface Transportation Board's (STB) environmental rules at 49 CFR Part 1105.7(e), the analysis specifically considered impacts to: (1) air quality, (2) noise, (3) local and regional transportation systems and (4) safety. This analysis indicates that the proposed Acquisition would have relatively minor environmental impacts in Georgia. Before assessing the environmental impacts, a brief description of the key elements of the Acquisition as it relates to Georgia immediately follows.

Both CSX and NS will reroute movements to more efficient routes that will improve customer service, on-time performance and car utilization. Through this Acquisition, Georgia shippers will extend their single-line market reach via CSX and NS into the Northeast and Midwest.

Waycross will remain a major CSX hub and expand intermodal service from Atlanta and Savannah to the North. Georgia will be served by five of the CSX service routes to be operated following the Acquisition, including the Atlantic Coast Service Route, linking Boston and Miami via Savannah and Waycross, and the Michigan-Florida Service Route, linking Detroit and Miami via Atlanta. The new route configurations will enable transit times between Georgia and new England to be reduced by at least one day and will be highly competitive with truck transport.

Atlanta will remain a major NS hub. The Acquisition allows NS to form a single-line route from Northeastern points to Atlanta and other southeastern points via Hagerstown, Greensboro and Charlotte. Capital improvements in Hagerstown will improve rail operations and on-time performance. General merchandise service between the Upper Midwest and Deep South is currently hampered by interchange at Cincinnati and Chicago. Combining NS and Conrail

Environmental Impacts

volumes and using Conrail's Elkhart Yard will create long distance trains between Elkhart and Chattanooga/Macon that will cut one to three days from current schedules.

Significant potential exists for CSX and NS diversion of traffic from trucks to rail. These diversions will have a favorable impact upon highway congestion and air quality conditions.

5.1 AIR QUALITY IMPACTS

Of the 159 counties in Georgia, 14 counties have nonattainment areas for air quality. The nonattainment areas are near Atlanta. These areas are nonattainment for ozone and/or lead.

Four counties in Georgia which are nonattainment areas for ozone and two counties with attainment areas have CSX and NS rail line segments, rail yards and/or intermodal facilities that would experience increases in activity that meet STB thresholds (see Table 1-1). These are listed below and shown in Figures 2-10.1 and 2-10.2. Line segments with Amtrak or commuter trains operating on them, if any, are in bold.

		A	Trucks	s per Day	Change in ADT on local roads (%)	
Intermodal Facilities	County	Quality Status	Pre-	Post-		
Atlanta	Fulton	N	523	603	0.1 - 0.7	
 N = Nonattainment. GTM = Gross Ton Miles 						

CSX Intermodal Facilities

5-2

Rail Line	e Segment			Trains	per Day	
From	To	County	Air Quality Status	Pre- Acqu	Post-	Increase in GTM (%)
Howell, GA	Spring, GA	Fulton	N	33.3	40.4	21
Industry Yard, GA	Spring, GA	Fulton	N	7.4	12.3	95
South Yard, GA	McDonough, GA	Butts	A	26.7	32.1	15
		Clayton	N			
		DeKalb	N			
		Fulton	N			
		Henry	N			
		Monroe	A			
South Yard, GA	Spring, GA	Fulton	N	26.7	38.1	32
 N = Nonattainment GTM = Gross Ton 	t, A = Attainment. Miles					

NS Rail Line Segments

NS Rail Yard

	-		Rail Cars Ha	andled per Day
Rail Yard	County	County Air Quality Status	Pre-Acquisition	Post-Acquisition
Doraville, GA	DeKalb	N	174	222
• N = Nonattainmen	ıt.			

NS Intermodal Facility

		45	Truck	s per Day	
Intermodal Facility	County	Quality Status	Pre-	Post-	- Change in ADT on local roads (%)
Atlanta-Inman, GA	Fulton	N	569	712	1.6 - 2.8
• N = Nonattainment.					

The increases in air emissions resulting from the increases in traffic or activity are estimated in the Impact Analysis by County section. Even though air emissions would be increased in the immediate vicinity of these rail facilities, other rail facilities in Georgia (and in other states served

Environmental Impacts

by CSX and NS) would experience decreases in traffic or activity and decreases in localized air emissions. These decreases would be a result of rerouting freight on the expanded CSX and NS systems to shorter, more direct routes. The net effect of rerouting would be a decrease in air emissions systemwide.

In addition, the diversion of freight from trucks to rail would result in reduced air emissions in the vicinity of major highways. Moreover, because trains emit a lower level of air pollutants per unit of freight moved than trucks, the diversion of freight from trucks to rail would also result in reduced air emissions systemwide.

5.1.1 Impact Analysis by County

This section analyzes the impacts to air quality in each county where a rail line segment, rail yard and/or intermodal facility meets the STB thresholds for analysis of air emissions. If a rail line segment crosses the county boundary, only the emissions from that portion of the segment within the county are estimated. Counties that are nonattainment areas are discussed first, followed by counties that are attainment areas.

5.1.1.1 Nonattainment Areas

In Georgia, four counties classified as nonattainment areas have rail line segments, rail yards and/or intermodal facilities that would experience increases in traffic or activity that would meet STB thresholds.

5.1.1.1.1 Clayton County, GA

Clayton County is classified as nonattainment (serious) for ozone. Increases in emissions have been estimated for each of the rail facilities in Clayton County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail L	ine Segment	Total	Length within County (miles)	Т	Change		
From	То	Length (miles)		Pre- Acqu	Post-	Change	in GTM (%)
South Yard, GA	McDonough, GA	63.00	5.73	26.7	32.1	5.4	15
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Clayton County

RailL	ine Segment	Estimated Increase in Emissions (tons per year)					-
From	То	NOx	со	voc	SO,	РМ	Pb
South Yard, GA	McDonough, GA	18.07	2.01	0.67	1.17	0.46	0.000038
• NOx = nitrogen or PM = particulate n	kides, CO = carbon monox natter, Pb = lead	tide, VOC = v	olatile org	anic compou	unds, SO ₂	= sulfur di	oxide,

Discussion of Impacts in Clayton County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail segment activity in Clayton County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.1.1.1.2 DeKalb County, GA

DeKalb County is classified as nonattainment (serious) for ozone. Increases in emissions have been estimated for each of the rail facilities in DeKalb County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Li	ine Segment	Tetal	Length	Т	Trains per Day		Change
From	То	Length (miles)	within County (miles)	Pre- Post- Acquisition Ch	Change	in GTM (%)	
South Yard, GA	McDonough, GA	63.00	3.98	25.7	32.1	5.4	15
• GTM = Gross Ton	Miles		5				

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of the NS Rail Line Segment in DeKalb County

Rail Line Segment		Estimated Increase in Emissions (tons per year)							
From	То	NOx CO VOC SO ₂ PM Pb							
South Yard, GA	McDonough, GA	12.55	1.39	0.47	0.81	0.32	0.000027		
• NOx = nitrogen o = particulate matt	oxides, CO = carbon mono er, Pb = lead	oxide, VOC =	volatile o	rganic comp	oounds, SC	D ₂ = sulfur	dioxide, PM		

Estimated Increases in Emissions for NS Rail Yard

Rail Yard	Estimated Increase in Emissions (tons per year)								
Kali Yard	NOx	со	voc	SO ₂	РМ	Pb			
Doraville, GA	2.25	0.27	0.13	0.10	0.05	0.0000033			
 NOx = nitrogen oxides, CO particulate matter Ph = least) = carbon monoxi	de, VOC =	volatile orga	nic compo	unds, $SO_2 = s$	sulfur dioxide, PM			

Discussion of Impacts in DeKalb County

Rail line segments and rail yards are considered mobile (not stationary) sources under EPA's air pollution regulations. As discussed in Section 1.2.1, emissions from activities at rail yards in nonattainment areas were compared to the New Source Review benchmark for serious nonattainment areas (i.e., 50 tons per year). None of the facilities' emissions increases would exceed the New Source Review Criteria.

Environmental Impacts

The increased rail segment activity in DeKalb County would result in increased levels of all pollutants, with tl e greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.1.1.1.3 Fulton County, GA

Fulton County is classified as nonattainment (serious) for ozone. Increases in emissions have been estimated for each of the rail facilities in Fulton County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Estimated Increases in Emissions for CSX Intermodal Facility

Internedal Facilities	1	Estimated Increase in Emissions (tons per year)							
Intermitidal Facilities	NOx	со	voc	SO ₂	PM	Pb			
Atlanta	2.3	4.0	0.5	0.8	0.9	0.000044			
 NOx = nitrogen oxides, CO = carbor particulate matter, Pb = lead 	n monoxide, VO	C = volatile	e organic con	mpounds, s	$SO_2 = sulfu$	dioxide, PM =			

Rail Li	ne Segment	Total	Length	T	Trains per Day		Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Howell, GA	Spring, GA	1.00	1.00	33.3	40.4	7.1	21
Industry Yard, GA	Spring, GA	5.00	5.00	7.4	12.3	4.9	95
South Yard, GA	Spring, GA	2.00	2.00	26.7	38.1	11.4	32
South Yard, GA	McDonough, GA	63.00	2.53	26.7	32.1	5.4	15
• GTM = Gross Ton I	Miles			-			

NS Rail Line Segments

Environmental Impacts

Rail Line Segment		Estimated Lacrease in Emissions (tons per year)							
From	То	NOx	со	voc	SO ₂	РМ	Pb		
Howell, GA	Spring, GA	5.21	0.58	0.19	0.34	0.13	0.000011		
Industry Yard, GA	Spring, GA	13.70	1.52	0.51	0.89	0.35	0.000029		
South Yard, GA	Spring GA	14.05	1.56	0.52	0.91	0.35	0.00003		
South Yard, GA	McDonough, GA	7.99	0.89	0.30	0.52	0.20	0.000017		
	Total	40.95	4.55	1.52	2.66	1.03	0.000087		
 NOx = nitrogen oxi PM = particulate m 	ides, CO = carbon monoxid atter, Pb = lead	e, $VOC = v$	volatile org	ganic compo	ounds, SO ₂	= sulfur di	oxide,		

Estimated Increases in Emissions for the Portion of the NS Rail Line Segments in Fulton County

Estimated Increases in Emissions for NS Intermodal Facility

Intermodal Facilities	Estimated Increase in Emissions (tons per year)								
	NOx	со	voc	SO ₂	PM	РЬ			
Atlanta-Inman	3.69	6.58	0.88	0.91	1.72	0.000071			
 NOx = nitrogen oxides, CO = particulate matter, Pb = lead 	carbon monoxi	de, VOC =	volatile orga	nic compo	bunds, $SO_2 = 1$	sulfur dioxide, PM =			

Discussion of Impacts in Fulton County

Rail line segments and intermodal facilities are considered mobile (not stationary) sources under EPA's air pollution regulations. As discussed in Section 1.2.1, emissions from activities at rail yards and intermodal facilities in nonattainment areas were compared to the New Source Review benchmark for serious nonattainment areas (i.e. 50 tons per year). None of the facilities' emissions increases would exceed the New Source Review Criteria.

The increased rail segment activity in Fulton County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.1.1.1.4 Henry County, GA

Henry County is classified as nonattainment (serious) for ozone. Increases in emissions have been estimated for each of the rail facilities in Henry County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Post- ition Change	
South Yard, GA	McDonough, GA	63.00	23.02	26.7	32.1	5.4	15
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Henry County

Raíl I	Rail Line Segment		Estimated Increase in Emissions (tons per year)				
From	То	NOx	СО	voc	SO2	PM	Pb
South Yard, GA	McDonough, GA	72.62	8.06	2.69	4.71	1.83	0.00015
• NOx = nitrogen of PM = particulate r	xides, $CO = carbon monox$ natter, $Pb = lead$	ide, VOC = vo	latile organi	ic compound	ds, $SO_2 =$	sulfur diox	ide,

Discussion of Impacts in Henry County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail segment activity in Henry County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.1.1.2 Attainment Areas

In Georgia, two counties classified as attainment areas have rail line segments that would experience increases in traffic that would meet STB thresholds.

5.1.1.2.1 Butts County, GA

Butts County is classified as an attainment area. Increases in emissions have been estimated for each of the rail facilities in Butts County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Line Segment		Tatal	Length	Т	Change		
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
South Yard, GA	McDonough, GA	63.00	18.47	26.7	32.1	5.4	15
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Butts County

Rail Li	Rail Line Segment		Estimated Increase in Emissions (tons per year)					
From	То	NOx	со	voc	SO ₂	PM	Pb	
South Yard, GA	McDonough, GA	58.27	6.47	2.16	3.78	1.47	0.00012	
• NOx = nitrogen ox PM = particulate m	ides, CO = carbon monox atter, Pb = lead	aide, VOC = v	volatile org	anic compou	unds, SO ₂ =	sulfur diox	cide,	

Discussion of Impacts in Butts County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Butts County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.1.1.2.2 Monroe County, GA

Monroe County is classified as an attainment area. Increases in emissions have been estimated for each of the rail facilities in Monroe County that would experience an increase in traffic or activity that meets STB thresholds, as presented below:

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
South Yard	McDonough	63.00	9.27	26.7	32.1	5.4	15
• GTM = Gross Tor	n Miles				1		

NS	Rail	L	ine	Segment
----	------	---	-----	---------

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Monroe County

Rail	Line Segment		Est	imated Incr (tons	rease in Er per year)		
From	То	NOx	со	voc	SO ₂	PM	Pb
South Yard	McDonough	29.24	3.25	1.08	1.89	0.74	0.000062
• NOx = nitrogen PM = particulate	oxides, CO = carbon mor e matter, Pb = lead	loxide, VOC =	volatile or	ganic compo	ounds, SO ₂	= sulfur di	oxide,

Discussion of Impacts in Monroe County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Monroe County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

5.2 NOISE IMPACTS

The CSX and NS line segments, rail yard and/or intermodal facilities that would experience increases in traffic or activity meeting the STB thresholds for noise analysis (see Table 1-2) are listed below. Traffic increases on some rail facilities in Georgia would meet STB's thresholds for noise analysis. Analyses were performed to identify where the noise level would increase by 2 dBA or greater and be above 65 dBA. In areas that would experience such an increase, noise-sensitive receptors within the pre- and post-Acquisition 65 dBA Ldn contour were counted. The number of noise-sensitive receptors (residences, schools, churches, hospitals) is provided. If a rail line segment crosses state boundaries, that portion of the segment in each state is analyzed under the same segment name in the noise section of that state.

	Trucks	per Day		Intermodal Yard		
Intermodal Facilities Location	Pre- Acquisition	Post- Acquisition	ADT on local roads	Change in dBA	Approx. Dist to 65 dBA Ldn Contour	
Hulsey Yard, Atlanta, GA	523	603	1 to 6 %	<2 dBA	-	
 = Not applicable 						

CSX Intermodal Facility

Hulsey Yard, Atlanta, GA

The Hulsey Yard intermodal facility in Atlanta, Georgia is located off of Boulevard Street. Truck transportation to this facility is via Boulevard Street. The land use around the facility is mixed residential, commercial, and industrial.

The intermodal facility currently serves 523 trucks per day. The projections are that postacquisition the facility will serve an average of 603 trucks per day. The additional 80 trucks per day would cause an approximately 0.6 dBA increase in noise exposure due to intermodal activities, representing an insignificant change in Ldn. Therefore, no adverse noise impacts are projected.

The additional 80 trucks trips per day to and from the facility approximately represent an approximately 6.0 percent increase in the ADT on Boulevard Street, and a 1.0 percent increase in the ADT on I-20. This increase in truck traffic would cause less than a 1 dBA increase in traffic noise, an insignificant change. Thus, no noise impacts are projected as a result of the small increase in truck traffic on these routes.

Segment Trains Per D		Day	Change in	Distance to Ldn Contour			
From	То	Pre- Acqu	Post-	Difference	dBA	Line Segment	Grade Crossing
South Yard, GA	Spring, GA	26.7	38.1	11.4	> 2 dBA	250	650

NS Line Segment

South Yard, GA to Spring, GA

This rail segment currently has 26.71 trains per day. The segment would experience an increase of 11.43 trains per day (a 31.79 percent change in gross ton-miles per year) as a result of the proposed Acquisition. The projected increases in train volume and gross ton-miles on this segment would cause less than a 2 dBA increase in the Ldn. No adverse noise impacts are expected.

	Trucks	per Day	Change in	Intermodal Yard		
Intermodal Facilities Location	Pre- Acquisition	Post- Acquisition	ADT on local roads	Change in dBA	Approx. Dist to 65 dBA Ldn Contour	
Atlanta-Inman	569	712	1.6-2.8	< 2 dBA		
• = Not applicable						

NS Intermodal Facility

Atlanta-Inman

The Atlanta-Inman intermodal facility is located on Marietta Street. Truck transportation to the facility is via Interstate 285, Interstate 75/Interstate 85, 10th St. and Marietta Street. The land use around the intermodal facility is predominantly residential.

Currently, the Atlanta-Inman intermodal facility serves 569 trucks per day. Post-Acquisition, this facility is expected to experience an increase of 143 trucks per day, a 1.6 - 2.8 percent increase in the ADT on local roads.

The increases in noise levels from the intermodal trucks and cranes at the facilities would not exceed the impact criterion of 2 dBA at the property boundary, therefore no further noise analysis was performed.

The increases in noise levels at the intermodal facility would not exceed the impact criteria of 2 dBA. Further, on Marietta Street, the additional truck traffic for the intermodal facility would be less than 2 dBA. Therefore, no adverse noise impacts are projected.

5.3 TRANSPORTATION

The primary transportation impacts of the proposed Acquisition are related to additional truck traffic generated at intermodal facilities where intermodal activity is projected to increase. Impacts near intermodal facilities would result from increased truck traffic using local roadways to enter and exit the intermodal facility. For those facilities with an expected increase of 50 trucks

Environmental Impacts

or more per day or an increase of 10 percent of the ADT on local roads, the impacts of this increased traffic on the local roadway system were analyzed. Traffic count data were obtained from local and state transportation agencies. While the offsetting benefits of the proposed Acquisition were not quantified at the local level, the traffic impacts from added truck traffic at intermodal facilities would be partially offset in many localities by the significant number of truck-to-rail diversions.

Hulsey Yard, Atlanta

The CSX Hulsey Yard, Atlanta intermodal facility is located on Boulevard Street, S.E., approximately ¹/₂ mile north of Interstate 20. Trucks access the Atlanta facility via Interstate 20 and Boulevard Street, S.E. The Average Daily Traffic (ADT) for the vicinity of the Atlanta facility was obtained from the Georgia Department of Transportation as follows:

- Interstate 20 157,549 vehicles per day
- Boulevard Street, S.E. 22,050 vehicles per day

The traffic counts reported are for 1995 and represent the average count for both directions.

Post-Acquisition, the Hulsey Yard intermodal facility is expected to realize an increase of 80 trucks per day. The additional truck traffic was assumed to be distributed throughout a 24-hour day. The total daily increase of 160 truck trips represents about a 0.7 percent increase in ADT on Boulevard Street, S.E., and about a 0.1 percent increase in ADT on Interstate 20. Thus, these increases would have a minor impact on the local and regional transportation network.

Atlanta-Inman

The NS Inman intermodal facility is on Marietta Street. Trucks would access the Inman facility via Interstate 285, Interstate 75/Interstate 85, 10th St. and Marietta. The ADT for the vicinity of the Inman facility was obtained from Georgia Planning Data Services as follows:

Environmental Impacts

- Marietta at Interstate 285 10,149 vehicles per day
- Marietta at Bolton 18,190 vehicles per day
- 10th St. 15,853 vehicles per day

Traffic counts reported are for 1995 and represents the average counts for both directions.

Post-Acquisition, the Inman intermodal facility is expected to realize an increase of 143 trucks per day. The additional truck traffic was assumed to be distributed throughout a 24-hour day. The total daily increase of 247 truck trips represent about a 2.8 percent increase in ADT on Marietta at Interstate 285, about a 1.6 percent increase in ADT on Marietta at Bolton and about a 1.8 percent increase in ADT on 10th St. Thus, these increases would have a minor impact on the local and regional transportation network.

5.4 SAFETY

Impacts on safety may occur as a result of increased traffic on rail line segments. Safety impacts are primarily related to changes in vehicle delays at grade crossings and the potential for train-vehicle accidents at grade crossings. Other safety impacts include potential train accidents and hazardous materials incidents.

No significant adverse safety impacts would result from the proposed Acquisition. Overall, a net safety benefit is expected due to truck-to-rail diversions. Safety issues and methodology are discussed in Section 1.2.4 of Part 2 and in Appendix D of Part 1 of this ER.

5.4.1 Grade Crossing Safety

The grade crossings with an ADT of 5,000 or greater along analyzed lines in Georgia are listed below. The estimated change in frequency of accidents for a specific crossing can be determined by identifying the number of trains per day pre- and post-Acquisition on the specified line segment (Section 5.1), identifying the ADT of the road crossed by the line segment listed below and, based on the identified information, finding the appropriate cells in Table 1-5 in Section 1.2.4.1.

Environmental Impacts

County	City	Rail Line Segment			ADT	
		То	From	Koad Crossed	5,000 - 10,000	> 10,000
Fulton	Atlanta	McDonough, GA	South Yd, GA	SR54 Henderson	x	
Fulton	Atlanta	McDonough, GA	South Yd, GA	Sawtell Avenue		x
Fulton	Atlanta	Spring, GA	Industry Yd, GA	Sylvan Road	x	
Fulton	Atlanta	Spring, GA	Industry Yd, GA	Allene Avenue		x
Fulton	Atlanta	Spring, GA	Industry Yd, GA	McDaniel Street	x	
Fulton	Atlanta	Spring, GA	South Yd, GA	McDaniel Street	x	
Muskogee	Columbus	Spring, GA	Industry Yd, GA	2nd Avenue	x	

NS Analyzed Grade Crossings with an ADT of 5,000 or greater

Although the potential for accidents at grade crossings would increase for crossings with increased train traffic, the potential for accidents on interstate highways would decrease because the number of long-haul trucks would decrease. Systemwide, the Acquisition is expected to have a beneficial effect on safety.

Information on vehicle delays is provided in Section 1.2.4.1.2.

5.4.2 Hazardous Materials Transportation

The pror -sed Acquisition would not affect CSX's and NS's policies or operating procedures governing the transport of hazardous materials. Although the quantities of materials transported may increase, the Acquisition would not affect the type of materials handled or the methods used to ensure the safe movement of these shipments. Additional information on CSX's and NS's transportation of hazardous materials is provided in Section 1.2.4.3 of this Part.

5.4.3 Hazardous Waste Sites/Spill Sites on the Right-of-Way

Information on CSX and NS hazardous waste sites and spill sites is provided in Section 1.2.4.4 cf this Part. A summary of CSX's, NS's and Conrail's hazardous materials reportable incidents from 1991 through 1995 is provided in Appendix F to Part 1.

6.0 ILLINOIS

6.0 ILI INOIS

RAIL LINE SEGMENTS, RAIL YARDS AND INTERMODAL FACILITY IMPACTS

This section provides an analysis of the potential environmental impacts in Illinois resulting from increases in activity on rail line segments, at rail yards and at intermodal facilities related to the proposed Acquisition. Consistent with the Surface Transportation Board's (STB) environmental rules at 49 CFR Part 1105.7(e), the analysis specifically considered impacts to: (1) air quality, (2) noise, (3) local and regional transportation systems and (4) safety. Thus analysis indicates that the proposed Acquisition would have some environmental impacts in the state of Illinois. Before assessing the environmental impacts, a brief description of the key elements of the Acquisition as it relates to Illinois immediately follows.

The expanded CSX and NS systems will maintain competition in Illinois, serving both carload and intermodal markets. Two-carrier competition between CSX and NS, long known for their vigorous competition throughout the Southeast and parts of the Midwest, will enhance the transportation choices available to Illinois shippers.

As a result of the Acquisition, there will be four comparable and competitive routes (two each 'y CSX and NS) between the eastern United States and the Chicago/St. Louis gateways. CSX and NS improvements to terminal facilities and new connections in the Chicago area will speed the interchange of freight between eastern and western markets. Faster, focused service in Chicago will eliminate some highway drayage of trailers and containers between railroad yards.

CSX will offer Chicago service via the B&O line to Greenwich, OH and the former Conrail Pennsylvania line via Fort Wayne, IN. East of Greenwich CSX will operate via the B&O through parts of Maryland and Pennsylvania. CSX will also operate via Crestline and Cleveland to Buffalo and markets in the East. CSX will operate across southern Illinois, connecting the East St. Louis and St. Elmo gateways with eastern markets via Indianapolis.

Environmental Report

A 29-mile Conrail route from Danville to Paris is expected to be abandoned. Freight customers at Danville, Chrisman and Paris will continue to receive rail service via other CSX routes. The proposed abandonment would eliminate 33 public grade crossings and 23 private grade crossings. No other route abandonments are anticipated in Illinois.

NS will operate Conrail's mainline between Chicago and Cleveland, OH, and the Streator gateway. NS will also operate a second route between Chicago and the East via Fort Wayne, IN. Key interchanges will be maintained by NS outside of the congested Chicago terminal with the Union Pacific railroad (UP) at Sidney, the Illinois Central (IC) at Tolono, and the Burlington Northern Santa Fe railroad (BNSF) at Streator. NS will alleviate congestion in Chicago by making increased use of the Kansas City gateway. NS will also serve the important St. Louis Gateway with an improved route.

6.1 AIR QUALITY IMPACTS

Of the 102 counties in Illinois, 14 counties have nonattainment areas and/or maintenance areas for air quality. The nonattainment areas comprise the metropolitan areas of Chicago and East St. Louis, IL. These areas are nonattainment for ozone and/or PM-10 (particulate matter less than 10 microns).

In Illinois, two of the counties with nonattainment areas for ozone and/or PM-10, none of the counties with maintenance areas and seven of the counties in attainment areas have rail line segments, rail yards and/or intermodal facilities that would experience increases in traffic or activity that would meet STB thresholds (See Table 1-1). These are listed below and shown in Figures 2-11.1 and 2-11.2. Line segments with Amtrak or commuter trains operating on them are in bold.

6-2

Rail Line Segment				Air	Trains per Day		Increase		
From		То		County	Quality Status	Pre- Acqu	Post- isition	in GTM (%)	
Barr Yd	IL	Blue Island Jct	IL	Cook	N	17	32.9	127	
Blue Island Jct	IL	59th Street	I	Cook	N	19.5	22.9	33	
Pine Jct	IN	Barr Yd	IL	Cook	N	37.6	43.3	40	
• N = Nonattainn	nent								

CSX Rail Line Segments

CSX Intermodal Facility

		Air	Trucks	per Day	Change in ADT				
Intermodal Facilities	County	Quality Status	Pre-	Post-	on local roads (%)				
Chicago - 59th Street	Cook	N	0	815	3.7 - 12.0				
• N = Nonattainment, M = Maintenance, A = Attainment, D-NA= Deemed Nonattainment, D-A = Deemed Attainment.									

Ľ

Rail Line Segment			1	Train	s per Day	Increase in GTM (%)
From	То	County	Air Quality Status	Pre- Post- Acquisition		
IC 95 St. Chicago, IL	Puliman Jn., IL	Cook, IL	N	2.0	5.9	182
Landers, IL	Forest Hill, IL	Cook, IL	N	28.9	28.1	64
Taylorsville, IL	ALS Mitchell, IL	Christian, IL	A	9.3	14.7	18
		Montgomery, IL	A			
		Macoupin, IL	A			
		Madison, IL	N			
Tilton, IL	Decatur, IL	Champaign, IL	A	22.7	39.1	65
		Macon, IL	A			
		Piatt, IL	A			
	Marine Sector	Vermillion, IL	A			
Control Pt. 501, IN	Colehour, IL	Cook, IL	N	57.1	67.6	32
Lafayette, IN	Tilton, IL	Vermillion, IL	A	23.6	41.0	81
• N = Nonattainment,	A = Attainment					

NS Rail Line Segments

GTM = Gross Ton Miles

• * = Since there is little to no pre-Acquisition traffic, the percentage increase is not meaningful

NS Rail Yard

Rail Yard			Rail Cars Handled per Day		
	County	Air Quality Status	Pre-	Post-	
			Acquisition		
Colehour	Cook	N/PM	74	94	

			Trucks	per Day	Change in ADT	
Intermodal Facility	County	Quality Status	Pre- Post- Acquisition		on local roads (%)	
Chicago-47th Street	Cook	N	532	737	0.2-2.5	
Chicago-Landers	Cook	N	412	506	0.1-0.9	
 N = Nonattainment, M Attainment. 	= Maintenance, A	= Attainment, I	D-NA= Deeme	d Nonattainment,	D-A = Deemed	

NS Intermodal Facilities

The increases in air emissions resulting from the increases in traffic or activity are estimated in the Impact Analysis by County section. Air emissions would be increased in the immediate vicinity of these rail facilities, other rail facilities in Illinois (and in other states served by CSX and NS) would experience decreases in traffic or activity, with consequent decreases in localized air emissions. These decreases would be a result of rerouting freight on the expanded CSX and NS systems to shorter, more direct routes.

In addition, the diversion of freight from trucks to rail would result in reduced air emissions in the vicinity of major highways. Moreover, because trains emit a lower level of air pollutants per unit of freight moved than trucks, the diversion of freight from trucks to rail would also result in reduced air emissions systemwide.

6.1.1 Impact Analysis by County

This section analyzes the impacts to air quality in each county where a rail line segment, rail yard and/or intermodal facility meets the STB thresholds for analysis of air emissions. If a rail line segment crosses the county boundary, only the emissions from that portion of the segment within the county are estimated. Counties that are nonattainment or were deemed nonattainment are discussed first, followed by counties that are attainment or were deemed attainment areas.

6-5

6.1.1.1 Nonattainment Areas

In Illinois, two counties classified as nonattainment areas have rail line segments, rail yards and/or intermodal facilities that would experience increases in traffic or activity that would meet STB thresholds.

6.1.1.1.1 Cook County, IL

Cook County is classified as nonattainment (severe) for ozone and partial nonattainment for PM-10. Some of the rail line segments associated with the proposed Acquisition pass through the part of the county that is nonattainment for PM-10. Increases in emissions have been estimated for each of the rail facilities in Cook County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles)	Length (miles) (miles)		Post-	Change	in GTM (%)
Barr Yd, IL	Blue Island Jct, IL	3	3	17.0	32.9	15.9	127
Blue Island Jct, IL	59th Street, IL	15	15	19.5	22.9	3.4	33
Pine Jct, IN	Barr Yd, IL	11	11	37.6	43.3	5.7	40
• GTM = Gross Ton	Miles						

COA Man Line Seguents	CS	K Rai	l Line	Segments
-----------------------	----	-------	--------	----------

Rail Li	ne Segment	gment Estimated Increase in Emissions (tons per year)					
From	To	NOx	со	voc	SO ₂	PM	Pb
Barr Yd, IL	Blue Island Jct, IL	37.8	4.2	1.4	2.4	1.0	0.00008
Blue Island Jct, IL	59th Street, IL	53.3	5.9	2.0	3.5	1.3	0.00011
Pine Jct, IN	Barr Yd, IL	102.0	11.3	3.8	6.6	2.6	0.00022
	Total	193.1	21.4	7.2	12.5	4.9	0.00041
• NOx = nitrogen ox	ides, CO = carbon monoxid	e, VOC =	volatile or	ganic compo	unds, SO ₂	= sulfur die	oxide,

Estimated Increases in Emissions for the Portion of CSX Rail Line Segments in Cook County

Estimated Increases in Emissions for CSX Intermodal Facility

-		Estimated Increase in Emissions (tons per year)								
Intermodal Facilities	NOx	со	voc	SO ₂	PM	Pb				
Chicago - 59th Street	16.6	29.6	4.0	7.1	7.9	0.00042				
• NOx = nitrogen oxides, CO = carbon monoxide, VOC = volatile organic compounds, SO ₂ = sulfur dioxid = particulate matter, Pb = lead										

NS Rail Line Segments

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
IC 95 St. Chicago, IL	Pullman Jn., IL	0.90	0.90	2.0	5.9	3.9	182
Landers, IL	Forest Hill, IL	1.00	1.00	12.9	12.1	-0.8	87
Control Pt. 501, IN	Colehour, IL	7.00	0.07	57.1	67.6	10.5	32
• GTM = Gross Ton M	Viles						

Rail Line	Segments	Estimated Increase in Emissions (tons per year)						
From	То	NOx	со	voc	SO2	PM	Pb	
iC 95 St. Chicago, IL	Pullman Jn., IL	3.47	0.39	0.13	0.23	0.09	0.0000074	
Landers, IL	Forest Hill, IL	3.61	0.40	0.13	0.23	0.09	0.0000077	
Control Pt. 501, IN	Colehour, IL	0.71	0.08	0.03	0.05	0.02	0.00000001	
	Total	7.79	0.87	0.29	0.51	0.20	0.000015	
• NOx = nitrogen oxide PM = particulate mat	es, CO = carbon monoxid ter, Pb = lead	e, VOC =	volatile org	ganic compo	unds, SO ₂	= sulfur di	oxide,	

Estimated Increases in Emissions for the Portion of NS Rail Line Segments in Cook County

Estimated Increases in Emissions for NS Rail Yard

D-4 V4	Estimated Increase in Emissions (tons per year)								
Kall 1 afg	NOx	со	voc	SO2	PM	Pb			
Colehour	0.94	0.11	0.05	0.04	0.02	0.0000014			
 NOx = nitrogen oxides, CO = carbon monoxide, VOC = volatile organic compounds, SO₂ = sulfur dioxide, PM = particulate matter, Pb = lead 									

Intermodel Facility	Estimated Increase in Emissions (tons per year							
Intermodal Facility	NOx	со	voc	SO ₂	PM	Pb		
Chicago-47th St.	5.28	9.41	1.26	1.30	2.46	0.000102		
Chicago-Landers	2.43	4.33	0.58	0.60	1.13	0.000047		
Total	7.71	13.74	1.84	1.90	3.59	0.000149		

Estimated Increases in Emissions for NS Intermodal Facility

PM = particulate matter, Pb = lead

Discussion of Impacts in Cook County

Rail line segments, rail yards and intermodal facilities are considered mobile (not stationary) sources under EPA's air pollution regulations. As discussed in Section 1.2.1, emissions from activities at rail yards and intermodal facilities in nonattainment areas were compared to the New Source Review benchmark for the pollutant in nonattainment. None of the facilities' emissions increases would exceed the New Source Review Criteria.

The increased rail segment activity in Cook County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.1.2 Madison County, IL

Madison County is classified as nonattainment (moderate) for ozone and partial nonattainment (moderate) for PM-10. The rail line segment associated with the proposed Acquisition passes through the part of the county that is nonattainment for PM-10. Increases in emissions have been estimated for each of the rail facilities in Madison County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail Line	Segment	Total	Length	Т	Trains per Day Pre- Post- Acquisition Change		Change
From	То	Length (miles)	within County (miles)	Pre- Acqu			in GTM (%)
Taylorsville, IL	Mitchell, IL	71.00	27.60	9.3	14.7	5.4	18
• GTM = Gross Ton M	files						

NS Rail Line Segment

Environmental Report

Rail I	Line Segment		Esti	mated Incr (tons	ease in En per year)	nissions	
From	То	NOx	СО	voc	SO ₂	PM	Pb
Taylorsville, IL	Mitchell, IL	31.96	3.55	1.18	2.07	0.81	0.000067
• NOx = nitrogen c PM = particulate	xides, CO = carbon mor matter, Pb = lead	oxide, VOC = v	olatile org	mic compou	mds, $SO_2 =$	sulfur dio	xide,

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Madison County

Discussion of Impacts in Madison County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail segment activity in Madison County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2 Attainment Areas

In Illinois, seven counties classified as attainment areas have rail line segments that would experience increases in traffic or activity that would meet STB thresholds.

6.1.1.2.1 Champaign County, IL

Champaign County is an attainment area. Increases in emissions have been estimated for each of the rail facilities in Champaign County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail L	ine Segment	Total	Length	Т	rains per	Day	Change in GTM (%)
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	
Tilton, IL	Decatur, IL	71.00	28.69	22.7	39.1	16.4	65
• GTM = Gross To	on Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Champaign County

Rail	Line Segment	Estimated Increase in Emissions (tons per year)					
From	То	NOx	со	voc	SO ₂	PM	Pb
Tiltca, IL	Decatur, IL	216.44	24.04	8.02	14.02	5.46	0.00045
• NOx = nitrogen • PM = particulate	oxides, CO = carbon mon matter, Pb = lead	oxide, VOC = vo	latile organi	c compound	ds, $SO_2 = st$	ulfur dioxi	do,

Discussion of Impacts in Champaign County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Champaign County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2.2 Christian County, IL.

Christian County is classified as attainment. Increases in emissions have been estimated for each of the rail facilities in Christian County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Environmental Report

1

Rail L	ine Segment	Total	Length	1	Trains per Day		Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Taylorsville, IL	ALS Mitchell, IL	71.00	17.44	9.3	14.7	5.4	18
• GTM = Gross Ton	Miles					~	

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Christian County

Rail I	Line Segment	Estimated Increase in Emissions (tons per year)					6
From	To	NOx	СО	voc	SO ₂	PM	Pb
Taylorsville, IL	ALS Mitchell, IL	20.20	2.24	0.75	1.31	0.51	0.000043
• NOx = nitrogen o PM = particulate	oxides, CO = carbon monor matter, Pb = lead	xide, VOC = v	volatile org	anic compou	inds, SO ₂ =	= sulfur dio	xide,

Discussion of Impacts in Christian County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Christian County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2.3 Macon County, IL

Macon County is an attainment area. Increases in emissions have been estimated for each of the rail facilities in Macon County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail Lin	ne Segment	Total	Length	Т	Trains per Day		Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post- isition	Change	in GTM (%)
Tilton, IL	Decatur, IL	71.00	9.92	22.7	39.1	16.4	65
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Macon County

		Estimated Increase in Emissions (tons per year)					
From	То	NOx	со	voc	SO ₂	PM	Pb
Tilton, IL	Decatur, IL	74.84	8.31	2.77	4.85	1.89	0.00016

PM = particulate matter, Pb = lead

Discussion of Impacts in Macon County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Macon County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emit sions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2.4 Macoupin County, IL

Macoupin County is classified as an attainment area. Increases in emissions have been estimated for each of the rail facilities in Macoupin County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail L	ine Segment	Total	Length	T	rains per	Day	Change
From	То	Length (miles)	within County (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Taylorsville, IL	ALS Mitchell, IL	71.00	7.87	9.3	14.7	5.4	18
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Macoupin County

Rail I	Line Segment	Estimated Increase in Emissions (tons per year)					
From	То	NOx	со	voc	SO2	PM	Pb
Taylorsville, IL	ALS Mitchell, IL	9.12	1.01	0.34	0.59	0.23	0.000019
• NOx = nitrogen o PM = particulate	oxides, CO = carbon monoy	uide, VOC = 1	volatile org	anic compou	unds, $SO_2 =$	= sulfur dio	xide,

Discussion of Impacts in Macoupin County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Macoupin County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

Environmental Report

6.1.1.2.5 Montgomery County, IL

Montgomery County is classified as an attainment area. Increases in emissions have been estimated for each of the rail facilities in Montgomery County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail L	ine Segment	Tett	Length	Т	Trains per Day		
From	То	IotalwithinPre-Post-Length (miles)County (miles)AcquisitionChange		Change	in GTM (%)		
Taylorsville, IL	ALS Mitchell, IL	71.00	18.09	9.3	14.7	5.4	18
• GTM = Gross Ton	Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rail Line Segment in Montgomery County

Rail I	Rail Line Segment Estimated Increase in (tons per year)			se in Emi r year)	n Emissions ear)		
From	То	NOx	со	voc	SO ₂	PM	Pb
Taylorsville, IL	ALS Mitchell, IL	20.95	2.33	0.78	1.36	0.53	0.000044
 NOx = nitrogen of PM = particulate 	oxides, CO = carbon monox matter, Pb = lead	ide, VOC = vo	latile organ	ic compound	is, $SO_2 = s$	ulfur dioxi	de,

Discussion of Impacts in Montgomery County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Montgomery County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2.6 Piatt County, IL

Piatt County is an attainment area. Increases in emissions have been estimated for each of the rail facilities in Piatt County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail Line Segment		Total	Length	Т	Change		
From	То	Length (miles)	Total within Length County (miles) (miles)	Pre- Acqu	Post-	Change	in GTM (%)
Tilton, IL	Decatur, IL	71.00	15.68	22.7	39.1	16.4	65
• GTM = Gross To	n Miles						

NS Rail Line Segment

Estimated Increases in Emissions for the Portion of NS Rai'. Line Segment in Piatt County

Rail Line Segment			Estimated Increase in Emissions (tons per year)							
From	То	NOx	со	voc	SO ₂	PM	РЬ			
Tilton, IL	Decatur, IL	118.28	13.14	4.39	7.66	2.99	0.00025			
• NOx = nitrogen PM = particulate	oxides, CO = carbon mon matter, Pb = lead	oxide, VOC = vo	latile organi	c compound	$ds, SO_2 = s$	ulfur dioxi	de,			

Discussion of Impacts in Piatt County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Pi, tt County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.1.1.2.7 Vermilion County, IL

Vermilion County is an attainment area. Increases in emissions have been estimated for each of the rail facilities in Vermilion County that would experience an increase in traffic or activity that meet STB thresholds, as presented below:

Rail I	Rail Line Segment		Length	Т	Change		
From	То	Length (miles)	Length (miles) (miles) (miles)		Post-	Change	in GTM (%)
Tilton, IL	Decatur, IL	71.00	16.71	22.7	39.1	16.4	65
Lafayette, IN	Tilton, IL	49.00	8.94	23.6	41.0	17.4	81
• GTM = Gross To	n Miles						

NS Rail Line Segments

Estimated Increases in Emissions for the Portion of NS Rail Line Segments in Vermilion County

Rail	Estimated Increase in Emissions (tons per year)						
From	То	NOx	со	voc	SO ₂	PM	Pb
Tilton, IL	Decatur, IL	126.09	14.00	4.67	8.17	3.18	0.00027
Lafayette, IN	Tilton, IL	85.72	9.52	3.18	5.55	2.16	0.00018
	Total	211.81	23.52	7.85	13.72	5.34	0.00045
110 1	1. 00 - 1	. VOC	latile annani			16 - diavi	da

 NOx = nitrogen oxides, CO = carbon monoxide, VOC = volatile organic compounds, SO₂ = sulfur dioxid PM = particulate matter, Pb = lead

Discussion of Impacts in Vermilion County

Rail line segments are considered mobile (not stationary) sources under EPA's air pollution regulations. The increased rail activities in Vermilion County would result in increased levels of all pollutants, with the greatest increase in NOx.

As stated previously, significant systemwide offsetting benefits to air quality would result from

Environmental Report

Part 2 - Operational Impacts

truck-to-rail diversions and traffic decreases on certain rail lines. Systemwide, the decrease in emissions from truck-to-rail diversions would outweigh the increased emissions from increased rail activity.

6.2 NOISE IMPACTS

The CSX and NS line segments, rail yards and/or intermodal facilities that would experience increases in traffic or activity meeting the STB thresholds for noise analysis (see Table 1-2) are listed below. Traffic increases on some rail facilities in Illinois would meet STB's thresholds for noise analysis. Analyses were performed to identify where the noise level would increase by 2 dBA or greater and be above 65 dBA. In areas that would experience such an increase, noise-sensitive receptors within the pre-Acquisition and post-Acquisition 65 dBA Ldn contour were counted. The number of noise-sensitive receptors (e.g., residences, schools, churches, hospitals) is provided. If a rail line segment crosses state boundaries, that portion of the segment in each state is analyzed under the same segment name in the noise section of that state.

Segment		1	Trains Per I	Day	Change in dBA	Distance to Ldn Contour	
From	То	Pre- Acqu	Post-	Difference		Líne Segment	Grade Crossing
Barr Yd, IL	Blue Island Jct, IL	17	32.9	15.9	3.3	360	960

CSX Rail Line Segments

Barr Yd, IL to Blue Island Junction, IL

Barr Yard to Blue Island Junction is a three mile segment that begins at the Barr Yard in Riverdale, IL, then runs west-northwest to Blue Island Junction along the Calumet Canal in Blue Island, Illinois. At present there are 17 trains per day on this line segment, which is expected to increase to 32.9 trains per day after the Acquisition. Most of the noise impact is due to the horn blowing at grade crossings where trains sound their horns for 1/4 mile before the crossing. With the post-Acquisition train traffic, the Ldn 65 contour distance would increase from 220 to 360 feet along the segment, and from 580 to 960 feet near grade crossings after the Acquisition.

Riverdale

The line segment starts at the west end of the Barr Yard in Riverdale. The line runs west, then turns north at the west edge of town towards the Calumet Canal. As the tracks run west out of the Barr yard, the segment passes several residences to the north. The line continues east-west through an industrial area that acts as acoustical shielding for the residences located north of the tracks. As the line turns northward, the land use becomes commercial on both sides of the tracks. There are two grade crossings along this segment, both located in industrial areas.

Blue Island

The segment next enters Blue Island from the south, to the Blue Island Junction located at the southern part of the town. The line passes near no residential land uses. The number of residences impacted is based on an assumed population density for this line segment.

Number of Sensitive Receptors: Barr Yard, IL to Blue Island Junction, IL Line Segment

	Pre-Acqu	isition		Post-Acquisition			
Resid.	School	Church	Hosp.	Resid.	School	Church	Hosp.
2	0	0	0		0	0	0

CSX Intermodal Facility

	Trucks	per Day		Intermodal Yard		
Intermodal Facilities Location	Pre- Acquisition	Post- Acquisition	ADT on local roads	Change in dBA	Approx. Dist to 65 dBA Ldn Contour	
59th Street, Chicago, IL	0*	815	2 to 6%	U	375 ft.	

*The intermodal facility at 59th Street is a proposed new facility, U = Background unknown

59th Street Chicago, IL

The proposed 59th Street facility to be constructed on the railroad-owned property of a former Pennsylvania Railroad yard would extend along the CSX tracks east of Western Avenue from 56th Street south to 75th Street to be constructed on the railroad-owned site of a former

Dania		De	
Envir	onmental	Re	pon

Pennsylvania Railroad yard. Trucks delivering and picking up merchandise would primarily operate between 59th and 63rd Streets. Access to the facility would be via West 59th Street from Western Avenue to the west and the Dan Ryan Expressway to the east. It is projected that there would be an average of 815 trucks per day going to and from the facility. Land use west of the proposed facility is primarily industrial and east of the facility is mixed residential and commercial. Potential noise impacts from this facility are summarized in Table 6.2.1-5 below.

The dominant noise source associated with operation of the facility is expected to be trucks within the facility. The 65 dBA Ldn contour is projected to extend 600 feet from the area where trucks would operate along the eastern side of the facility between 59th and 63rd Streets. The projected 65 dBA Ldn contour is within the facility boundary to the west. To the east, there are three single-family residences on the corner of 63rd Street and South Hamilton and the Goodlow School within the projected 65 dBA Ldn contour.

Trucks serving the facility would cause an increase in the ADT of approximately 6.0 percent on West 59th Street and 2.0 percent on Western Avenue. Noise exposure along Western Avenue is projected to increase about 1 dBA due to the additional truck traffic. This is an insignificant change in noise exposure and is not projected to cause any noise impacts.

Truck traffic to and from the facility is projected to cause a 3 dBA increase in noise exposure along West 59th Street. West 59th Street is a four-lane roadway with the curb lane used for traffic only during commute periods. Land use along West 59th Street is predominantly commercial and industrial, with some vacant lots due to urban decay. However, there are two residential clusters that would be affected by the 3 dBA increase in noise exposure. It is projected that a total of 63 dwelling units and two churches would be exposed to the 3 dBA increase in noise exposure.

Noise Source		Pre-Act	quisition*		Post-Acquisition				
1100se Source	Resid.	Schools	Churches	Hospitals	Resid.	Schools	Churches	Hospitals	
Truck traffic within Intermodal Facility**	-	-	-	-	3	1	0	0	
Traffic on Western***		-	-		0	0	0	0	
Traffic on 59th St ***	-		-	-	63	0	2	0	
*Proposed new facility, n **Noise sensitive recepto ***Noise sensitive recepto	o pre-Acqui ors projected tors projected	isition noise to be expo ed to experi	e impacts. sed to Ldn 6 ence a 3 dBA	5 dBA or gr A or greater i	eater ncrease in	Ldn.			

Number of Sensitive Receptors: 59th St. Intermodal Facility, Chicago, IL.

Segment			Trains Po	er Day	Change	Distance to Ldn Contour	
From	То	Pre- Acqui	Post-	Difference	in dBA	Line Segment	Grade Crossing
Control Pt. 501, IN	Colehour, IL	57.1	67.6	10.5	<2 dBA	250	750
IC 95 St. Chicago, IL	Pullman Junction, IL	2.0	5.9	3.9	4.3	100	250
Layfayette, IN	Tilton, IL	23.6	41.0	17.4	2.4	250	750
Tilton, IL	Decatur, IL	22.7	39.1	16.4	2.3	250	750

NS Rail Line Segments

Control Point 501, IN to Colehour, IL

This rail segment currently has 57.06 trains per day. The segment would experience an increase of 10.51 trains per day (a 32 percent change in gross ton-miles per year) as a result of the proposed Acquisition. The projected increases in train volume and gross ton-miles on this segment would cause less than a 2 dBA increase in the Ldn. No adverse noise impacts are expected.

IC 95 St. Chicago, IL to Pullman Junction, IL

This rail segment currently has 2.00 trains per day. This segment would experience an increase of 3.86 trains per day and an increase of 181 percent in gross ton-miles per year as a result of the

Environmental Report

Part 2 - Operational Impacts

proposed Acquisition. The change in train volume would result in an Ldn increase of 4.3 dBA, exceeding the impact criterion. Most impacts would occur at or near grade crossings where train horns would be sounded as a warning; no grade crossings are on this segment. The current 65 dBA Ldn contour of 50 feet (100 feet at grade crossings) would extend to approximately 100 feet (250 feet at grade crossings) perpendicular to the tracks. Noise impacts for sensitive receptors along this segment are described below:

Greater Chicago Metropolitan Area

This is a large metropolitan area where the south to north-trending track is near the center of the city. Numerous residences, businesses and industries are located in the community. There are schools in the community, but only three churches near the track.

Number of Sensitive Receptors IC 95 Street Chicago, IL to Pullman Junction, IL Line Segment

	Pre-Ac	quisition		Post-Acquisition				
Residences	Schools	Churches	Hospitals	Residences	Schools	Churches	Hospitals	
0	0	0	0	3	0	3	0	

Lafayette, IN to Tilton, IL

This rail segment currently has 23.58 trains per day, would experience an increase of 17.41 trains per day and an increase of 80.52 percent in gross ton-miles per year as a result of the proposed Acquisition. The change in train volume would result in an Ldn increase of 2.4 dBA, exceeding the impact criterion. Most impacts would occur at or near grade crossings where train horns would be sounded as a warning; 80 grade crossings are on this segment. The current 65 dBA Ldn contour of 200 feet (250 feet at grade crossings) would extend to approximately 550 feet (750 feet at grade crossings) perpendicular to the tracks. Noise impacts for sensitive receptors along this segment are described below:

Illiana

This is a small community where the track trends northeast to southwest along the northwest edge of this community. There are only a few residences near the track.

Danville

This is a mid-sized community where the northeast to southwest-trending track is in the northeast part of the city. Numerous residences, businesses and industries occur on both sides of the rail in the community. A few schools and churches are located close to the rail.

Tilton

This is a small community where the track trends northeast to southwest along the northeast edge of this community. There are only a few residences, businesses, schools and churches which are near the track.

Number of Sensitive Receptors Lafayette, IN to Tilton, IL Line Segment

Pre-Acquisition				Post-Acquisition			
Residences	Schools	Churches	Hospitals	Residences	Schools	Churches	Hospitals
395	7	4	0	592	7	6	0
• only represent noise-sensitive receptors in Illinois							

Tilton, IL to Decatur, IL

This rail segment currently has 22.74 trains per day. The segment would experience an increase of 16.39 trains per day and an increase of 64.76 percent in gross ton-miles per year as a result of the proposed acquisition. The change in train volume would result in an Ldn increase of 2.3 dBA, exceeding the threshold for noise analysis. The majority of impacts would occur at or near grade crossings where train horns would be sounded as a warning; 99 grade crossings are on this segment. The current 65 dBA Ldn contour of 150 feet (250 feet at grade crossings) would extend to approximately 500 feet (750 feet at grade crossings) perpendicular to the tracks. Noise impacts for sensitive receptors along this segment are described below:

Environmental Report

Part 2 - Operational Impacts