The Electricity Technology Challenge

Surface Transportation Board
Rail Energy Transportation Advisory Committee
Washington, DC
December 1, 2009

Henry A. “Hank” Courtright
Senior Vice President
Defining the Electricity Technology Challenge

- **De-carbonize the electricity infrastructure**

- **Provide reliable, affordable, and environmentally responsible electricity to consumers**

Two Key Metrics: CO₂ Emissions and Cost of Electricity
The CO₂ Challenge

Assumed Economy-wide CO₂ Reduction Target

Historical Emissions

Remainder of U.S. Economy

U.S. Electric Sector

2005 = 5982 mmT CO₂
2012 = 3% below 2005 (5803 mmT CO₂)
2020 = 17% below 2005 (4965 mmT CO₂)
2030 = 42% below 2005 (3470 mmT CO₂)
2050 = 83% below 2005 (1017 mmT CO₂)

83% Reduction in CO₂ emissions from 2005

© 2009 Electric Power Research Institute, Inc. All rights reserved.
The Cost Challenge

U.S. Retail Price of Electricity

Flat real electricity prices for past 40 years... what about the next 40 years?
The Technology Challenge

Wholesale Electricity Cost (2007 cents/kWh)

Emissions Intensity (metric tons CO₂/MWh)

Cost of Electricity

2007

U.S. Average

De-Carbonization

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Understanding the Technology Challenge

Insights Provided by Two Different Analytical Models

• Bottoms-up “Prism” Technology Analysis
 • Uses Energy Information Administration’s (EIA) Annual Energy Outlook as the base case
 • Estimates CO₂ reduction impacts relative to the base case if more aggressive technology targets could be met

• Tops-down “MERGE” Economic Analysis
 • Optimization model of economic activity and energy use
 • Inputs: Energy supply technologies and costs for electric generation and non-electric energy
 • Constraints: Carbon policy and energy resource availability
 • Output: Economy-wide impacts of carbon policy
U. S. Electric Sector CO₂ Emissions
41% reduction in 2030 from 2005 level is technically feasible using a full portfolio of electric sector technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>EIA Base Case</th>
<th>EPRI Prism Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Load Growth ~ +0.95%/yr</td>
<td>8% Additional Consumption Reduction by 2030</td>
</tr>
<tr>
<td>T&D Efficiency</td>
<td>None</td>
<td>20% Reduction in T&D Losses by 2030</td>
</tr>
<tr>
<td>Renewables</td>
<td>60 GWe by 2030</td>
<td>135 GWe by 2030 (15% of generation)</td>
</tr>
<tr>
<td>Nuclear</td>
<td>12.5 GWe New Build by 2030</td>
<td>No Retirements; 10 GWe New Build by 2020; 64 GWe New Build by 2030</td>
</tr>
<tr>
<td>Fossil Efficiency</td>
<td>40% New Coal, 54% New NGCCs by 2030</td>
<td>+3% Efficiency for 75 GWe Existing Fleet 49% New Coal; 70% New NGCCs by 2030</td>
</tr>
<tr>
<td>CCS</td>
<td>None</td>
<td>90% Capture for New Coal + NGCC After 2020 Retrofits for 60 GWe Existing Fleet</td>
</tr>
</tbody>
</table>
2009 Prism – PEV and Electro-Technologies

Low-carbon generation enables electrification and CO₂ reductions in other sectors of economy

<table>
<thead>
<tr>
<th>Technology</th>
<th>EIA AEO Base Case</th>
<th>EPRI Prism Target</th>
</tr>
</thead>
</table>
| Electric Transportation | None | PHEVs by 2010
40% New Vehicle Share by 2025
3x Current Non-Road Use by 2030 |
| Electro-technologies | None | Replace ~4.5% Direct Fossil Use by 2030 |
Generation by Fuel Source in 2030

What if we LIMIT the Generation PORTFOLIO?

Prism → 60% no- or low-carbon electricity by 2030

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Technology Portfolios

• Limited Portfolio
 No CO₂ capture and storage (CCS)
 Nuclear generation does not expand
 No plug-in electric vehicles (PEV’s)

• Full Portfolio
 Coal and Gas CCS available
 Accelerated end-use efficiency
 PEV’s can expand
 Nuclear production can expand
MERGE Economic Model

- Optimization Model of Economic Activity and Energy Use through 2050
 - Maximize Economic Wealth

- Inputs
 - Energy Supply Technologies and Costs for Electric Generation and Non-Electric Energy

- Constraints
 - Greenhouse Gas Control Scenarios
 - Energy Resources

- Outputs
 - Economy-wide Impact of Carbon Policy
MERGE U.S. Electric Generation Mix

Aggressive Energy Efficiency Needed with Either Portfolio

Limited Portfolio

Full Portfolio

Generation Mix

Demand Reduction

Demand Reduction

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Insights – Renewables

Limited Portfolio

Full Portfolio

> 20% Renewables by 2030 with Either Portfolio
> 50% Renewables by 2050 with Limited Portfolio
Insights – Nuclear and CCS

Limited

Full Portfolio

Gas Expands Rapidly 2010-2020 if Uncertainty Exists Regarding Availability of New Nuclear and CCS post 2020
2030 Generation Mix

Remarkably different futures...and only 20 years away!

Limited Portfolio

Full Portfolio

© 2009 Electric Power Research Institute, Inc. All rights reserved.
2050 Generation Mix

Totally different futures in 2050

Limited Portfolio

- Solar
- Gas
- Biomass
- Wind
- Hydro
- Nuclear

Full Portfolio

- Coal + CCS
- Biomass
- Wind
- Hydro
- Nuclear
- Gas
MERGE CO₂ Price Results

> $50/MT CO₂ by 2020 for either portfolio

$/metric ton CO₂ (2007$)

2020 2030 2040 2050

Limited Portfolio

Full Portfolio
MERGE Wholesale Electricity Cost Results

2007 U.S. Average Wholesale Electricity Cost

$/Mwh (2007$)

<table>
<thead>
<tr>
<th>Year</th>
<th>Limited Portfolio</th>
<th>Full Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>$60</td>
<td>$80</td>
</tr>
<tr>
<td>2030</td>
<td>$80</td>
<td>$100</td>
</tr>
<tr>
<td>2040</td>
<td>$100</td>
<td>$120</td>
</tr>
<tr>
<td>2050</td>
<td>$120</td>
<td>$140</td>
</tr>
</tbody>
</table>

2050

2007 U.S. Average Wholesale Electricity Cost
MERGE De-carbonization Results

MERGE Projections 2020-2050

Cost of Electricity

Wholesale Electricity Cost (2007 cents/kWh)

Emissions Intensity (metric tons CO₂/MWh)

De-Carbonization
MERGE De-carbonization Results

High Cost to meet 2050 Reduction Target with >80% Generation Mix Gas and Renewables
Meeting the Challenge

Wholesale Electricity Cost (2007 cents/kWh)

Emissions Intensity (metric tons CO₂/MWh)

MERGE Projections 2020-2050

Limited Portfolio

Full Portfolio

RD&D and Deployment Challenge

Innovation Challenge

De-Carbonization

© 2009 Electric Power Research Institute, Inc. All rights reserved.
Electricity policy and technology actions over the next decade will to a great extent shape the electricity future of 2050
Industry / EPRI
Demonstration Projects

Carbon Capture and Storage
Alstom / We-Energies / EPRI
Chilled Ammonia Pilot

Achievements:
- High CO₂ removal ~90%
- High purity CO₂ ~99%
- Low ammonia emissions
- Energy use as predicted

Declared Success!!!
Pilot Concluded
PC with CCS: AEP/Alstom

• ~20 MW capture module at AEP’s Mountaineer plant. CO2 injection into on-site storage wells

• Mountaineer started capturing CO$_2$ on Sept 1 and injecting CO$_2$ on Oct 1

• Formal dedication October 30

• Several years of planned operation & testing
PC with CCS: Southern/MHI

• ~25 MW capture module at Southern Company’s Plant Barry (Alabama)
• MHI KS-1 advanced amine process
• Injection and storage test conducted by DOE “SECARB” regional partnership with EPRI technical leadership

Status

• Site characterization under way
• Start-up scheduled for 1Q 2011
Progress to date

- Initial testing of 0.5 tons O_2/day with over 600 days of cumulative operation
- Initial testing of 1.0 ton O_2/day modules planned this year
- Engineering & design completed for 150 tons O_2/day test unit